期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
回收轮胎粉反应增韧PVC性能的研究 被引量:1
1
作者 罗玮 黄骅 +3 位作者 曹理朝 彭倩 唐嘉锋 苏胜培 《精细化工中间体》 CAS 2015年第2期61-65,共5页
将甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)、马来酸酐(MAH)3种不同单体分别通过开炼机剪切加入废旧轮胎粉(GRT)后与聚氯乙烯(PVC)直接反应挤出,制备了3种PVC/GRT复合材料。利用万能电子试验机测定了材料的力学性能,实验结果表明:3种不... 将甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)、马来酸酐(MAH)3种不同单体分别通过开炼机剪切加入废旧轮胎粉(GRT)后与聚氯乙烯(PVC)直接反应挤出,制备了3种PVC/GRT复合材料。利用万能电子试验机测定了材料的力学性能,实验结果表明:3种不同单体修饰的GRT/PVC复合材料中PVC/GRTg-GMA复合材料韧性提高显著,在GRT用量为5 phr,GMA、St、DCP用量分别为4、4、0.15 phr时,PVC/GRT复合材料缺口冲击强度提高25.6%。扫描电镜结果显示GMA的加入改善了界面相容性。 展开更多
关键词 聚氯乙烯(PVC) 回收轮胎粉(GRT) 甲基丙烯酸缩水甘油酯(GMA) 反应增韧
下载PDF
PA66/E-RTMB增韧体系的化学结构及性能 被引量:1
2
作者 左琳 代佳丽 +2 位作者 程龄贺 李贵勋 王经武 《塑料工业》 CAS CSCD 北大核心 2008年第5期25-28,共4页
用环氧化合物与助反应剂配比(C/R)不同的E型反应性增韧母料(E-RTMB)与PA66热机械反应性共混制备出了PA66/E-RTMB(C/R)增韧体系,研究了PA66/E-RTMB(C/R)增韧体系的化学结构、熔体质量流动速率(MFR)、力学性能及非等温熔融和结晶行为。结... 用环氧化合物与助反应剂配比(C/R)不同的E型反应性增韧母料(E-RTMB)与PA66热机械反应性共混制备出了PA66/E-RTMB(C/R)增韧体系,研究了PA66/E-RTMB(C/R)增韧体系的化学结构、熔体质量流动速率(MFR)、力学性能及非等温熔融和结晶行为。结果表明,PA66/E-RTMB中E-RTMB与PA66间形成了化学键连接;与原料PA66相比,PA66/E-TMB(C/R)增韧体系的MFR显著减小,悬臂梁缺口冲击强度显著提高,拉伸屈服应力及弯曲模量稍有降低;与原料PA66、HDPE相比,PA66/E-RTMB(C/R)增韧体系中PA66、HDPE的熔点有所降低,热结晶起始温度有不同程度的提高,HDPE的结晶过程很弥散,PA66晶核形成及晶体生长速率明显提高;E-RTMB的C/R对PA66/E-RTMB(C/R)增韧体系的MFR、冲击强度及PA66、HDPE的非等温熔融和结晶行为有明显影响。 展开更多
关键词 尼龙66 E型反应增韧母料 化学结构 非等温熔融和结晶行为
下载PDF
PA66/RTMB/GF复合材料的结构与力学性能研究 被引量:5
3
作者 代佳丽 左琳 +1 位作者 李贵勋 王经武 《塑料工业》 CAS CSCD 北大核心 2009年第11期41-44,共4页
采用玻璃纤维(GF)、反应性增韧母料(RTMB)与PA66热机械反应性共混制备出了PA66/RTMB/GF复合材料。用IR、SEM、力学性能测定等方法研究了PA66/RTMB/GF复合材料的化学结构、断面形态及力学性能。结果表明:PA66/RTMB/GF中RTMB、GF和PA66间... 采用玻璃纤维(GF)、反应性增韧母料(RTMB)与PA66热机械反应性共混制备出了PA66/RTMB/GF复合材料。用IR、SEM、力学性能测定等方法研究了PA66/RTMB/GF复合材料的化学结构、断面形态及力学性能。结果表明:PA66/RTMB/GF中RTMB、GF和PA66间形成了化学键连接,GF和PA66间呈柔性界面结合;PA66/RTMB/GF质量比为60/10/30的复合材料的拉伸屈服应力、弯曲弹性模量、悬臂梁缺口冲击强度分别提高到原料PA66的1.73倍、2.72倍、3.86倍。 展开更多
关键词 尼龙66 玻璃纤维 反应增韧母料 结构 力学性能
下载PDF
羧基含量可控氮杂环聚芳醚砜反应性增韧601环氧树脂 被引量:2
4
作者 郭鸿俊 王雪 +4 位作者 宗立率 李健芳 王锦艳 李桂洋 蹇锡高 《高分子学报》 SCIE CAS CSCD 北大核心 2018年第9期1236-1243,共8页
采用酚酞啉(PPL)、二氮杂萘酮双酚(DHPZ)等单体制备了羧基含量可控的杂萘联苯结构聚芳醚砜(PPES-P),聚合物主链羧基含量与分子设计一致性较高,玻璃化转变温度(Tg)均达到260°C以上,具有优异的热稳定性和溶解性.进一步选取不同羧基... 采用酚酞啉(PPL)、二氮杂萘酮双酚(DHPZ)等单体制备了羧基含量可控的杂萘联苯结构聚芳醚砜(PPES-P),聚合物主链羧基含量与分子设计一致性较高,玻璃化转变温度(Tg)均达到260°C以上,具有优异的热稳定性和溶解性.进一步选取不同羧基含量的PPES-P对601环氧树脂体系进行反应性增韧改性,考察PPES-P羧基含量对树脂体系力学性能和热稳定性的影响.结果表明:PPES-P树脂与601环氧树脂相容性较好,羧基作为交联点能够参与环氧树脂固化反应,强化了增韧组分与基体树脂的界面结合能力,PPES-P反应性增韧改性不仅提高了601环氧树脂体系的冲击与弯曲性能,还保持了树脂体系较高的Tg,其中PPL与DHPZ结构单元为1:3的PPES-P13改性后树脂冲击强度提高了43%,试样断裂面为均相结构且呈韧性断裂形貌. 展开更多
关键词 反应增韧 601环氧树脂 聚芳醚砜 耐热性能
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部