C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitt...Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.展开更多
The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of ...The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.展开更多
To solve the problem of vast cement and low strength in the treated sludge, clay mineral used for accessorial solidification material was applied to advance strength. The principle of solidification sludge strength be...To solve the problem of vast cement and low strength in the treated sludge, clay mineral used for accessorial solidification material was applied to advance strength. The principle of solidification sludge strength because of clay mineral is not clear and has not supported the choice of clay mineral. The mineral and pore water is analyzed in order to contrast clay mineral added or not based on the XRD and pore water chemical character. The result shows that the absorbed quantity of Ca2~ was reduced by sludge because of clay mineral added, the hydrated reaction was advanced and integrated solidified materials was formed.展开更多
Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious ...Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.展开更多
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method...To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.展开更多
The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced t...The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.展开更多
In order to improve the nonlinear optical property and stability of azo-dye chromophore, the nonlinear optical polyimide (NLOPI) attached with azo chromophore side chain is synthesized by diazo coupling reaction of 4-...In order to improve the nonlinear optical property and stability of azo-dye chromophore, the nonlinear optical polyimide (NLOPI) attached with azo chromophore side chain is synthesized by diazo coupling reaction of 4-nitrobenzenediazonium tetrafloroborate. The designed chemical structure of production can be proved in the infrared spectrum and ultraviolet-visible absorption spectrum. The NLOPI exhibited UV-Vis absorption of the azobenzene chromophore in the vicinity of the wavelengths of 330 and 490 nm. The broad amorphous peak proved that the NLOPI was amorphous with a little periodical structure along the side chain. According to transmission electron microscope, the NLOPI film was homogeneous. NLOPI only displayed a decrease in mass of about 5% at the temperature of 400 ℃ through thermogravimetric analysis.展开更多
The non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends was investigated by differential scanning calorimetry(DSC). The Mo equation was employed to analyze the non-isothermal crystallization da...The non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends was investigated by differential scanning calorimetry(DSC). The Mo equation was employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. The results show that the crystallization onset temperature(T onset) and crystallization peak temperature(T p) decrease with the increase of the content of reactive microgel, while ΔT(T onset–T p), the crystallization half-time(t1/2) and the crystallization enthalpy(ΔH c) increase. The required cooling rates of blends are higher than that of neat nylon6 in order to achieve the same relative crystallinity in a unit of time. The crystallization activation energies of the reactive microgel/nylon 6 blends are greater than those of the neat nylon 6. When the content of reactive microgel is 30%, the relative crystallinity(X t) reaches the maximum.展开更多
Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, thorium was res...Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, thorium was restricted to use for gas mantles, especially in the early 20th century. In the beginning of the nuclear era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65,000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, there will be a significant increasing in the uranium prices occur, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, ^232Th can be converted to ^233U (fissile) more efficiently than ^238U to ^239pu. Besides this, since it is possible to convert thorium waste into non-radioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1,200,000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use.展开更多
V-4Cr-4Ti is the leading candidate vanadium alloy for fusion applications as structural material of first wall and blanket. Due to the interaction between Ti and interstitial solutes of C, N, and O, precipitation occu...V-4Cr-4Ti is the leading candidate vanadium alloy for fusion applications as structural material of first wall and blanket. Due to the interaction between Ti and interstitial solutes of C, N, and O, precipitation occurs at elevated temperature. The behavior has been studied in the past few years by short time annealing and results showed that it may greatly affect its mechanical properties Ti-CON type precipitates, appearing at- 700℃ in the solid-solution annealed alloy in high number density and small size, strengthen the alloy significantly and reduce its ductility. As the ductility reduction is in an acceptable level, the strengthening might be utilized for a light and strong vanadium alloy structure. Before a conclusion, uncertainty of its thermal stability should be studied during the high temperature serves. Besides, seldom has been studied for the effect of long time aging on precipitation behavior and tensile properties of the alloy.展开更多
Cobalt-based oxygenic compounds Co(OH)2,CoO and Co3 O4 are attractive for electrochemical energy storage owing to their high theoretical capacities and pseudocapacitive properties.Despite the great efforts to their co...Cobalt-based oxygenic compounds Co(OH)2,CoO and Co3 O4 are attractive for electrochemical energy storage owing to their high theoretical capacities and pseudocapacitive properties.Despite the great efforts to their compositional and morphological regulations,the performances to date are still quite limited owing to the low active surface area and sluggish charge transfer kinetics.Herein,different Co-based nanocrystals(Co-NCs)were conveniently anchored on the hierarchical nitrogen-doped carbon nanocages(hNCNCs)with high specific surface area and coexisting micro-meso-macropores to decrease the size and facilitate the charge transfer.Accordingly,a high specific capacity of1170 Fg^-1 is achieved at 2 Ag^-1 for the Co(OH)2/hNCNCs hybrid,in which the capacitance of Co(OH)2(2214 F gco(OH)2)is approaching to its theoretical maximum(2595 Fg^-1),demonstrating the high utilization of active materials by the hybridization with N-doped nanocarbons.This study also reveals that these Co-NCs store/release electrical energy via the same reversible redox reaction despite their different pristine compositions.This insight on the energy storage of Co-based nanomaterials suggests that the commonly-employed transformation of the Co-NCs from Co(OH)2 to CoO and Co3 O4 on carbon supports is unnecessary and even could be harmful to the energy storage performance.The result is instructive to develop high-energy-density electrodes from transition metal compounds.展开更多
Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high s...N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high specific area (1,485 m2.g-l), high nitrogen content (10.8%) and suitable graphitic degree results in catalysts exhibiting high activity (with onset and half-wave potentials of 0.88 and 0.79 V vs the reversible hydrogen electrode (RHE), respectively) and four-electron selectivity for the oxygen reduction reaction (ORR) in alkaline medium---comparable to a commercial Pt/C catalyst, but far exceeding Pt/C in stability and durability. Owing to their superb ORR performance, low cost and facile preparation, the catalysts have great potential applications in fuel cells, metal-air batteries, and ORR-related electrochemical industries.展开更多
Device stability becomes one of the most crucial issues for the commercialization of organic solar cells(OSCs) after high power conversion efficiencies have been achieved. Besides the intrinsic stability of photoactiv...Device stability becomes one of the most crucial issues for the commercialization of organic solar cells(OSCs) after high power conversion efficiencies have been achieved. Besides the intrinsic stability of photoactive materials, the chemical/catalytic reaction between interfacial materials and photoactive materials is another critical factor that determines the stability of OSC devices. Herein, we design and synthesize a reaction-inert rylene diimide-embedded hyperbranched polymer named as PDIEIE, which effectively reduces the work function of indium tin oxide electrode from 4.62 to 3.65 eV. Meanwhile, PDIEIE shows negligible chemical reaction with high-performance photoactive materials and no catalytic effect under strong ultraviolet illumination, resulting in much better photo-stability of OSCs with PDIEIE cathode interlayer(CIL), relative to the traditional CILs, including most-widely used metal oxides and polyethyleneimine derivatives.展开更多
Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied ...Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied in diverse applications,especially in heterogeneous catalysis.The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic guest molecules to exploit more possibilities with enhanced catalytic performance.In this review,we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis,which includes oxidation reaction,hydrogenation reaction,and condensation reaction.Emphasis is placed on the multiple functions of hierarchical structures,and the catalytic activity,selectivity,stability,recyclability,etc.of the industrial utility of H-MOFs.Finally,the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.展开更多
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
文摘Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.
基金Project(51276154)supported by the National Natural Science Foundation of ChinaProject(2012010111014)supported by the University Doctoral Subject Special Foundation of China
文摘The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu_2(CeCu_2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu_2 were a mixture of Cu, unknown hydride Ⅰ, and unknown hydride Ⅱ. Based on the PCT(pressure-concentration-temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy change ΔH and entropy change ΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.
基金Acknowledgments Foundation item: National Science Foundation of China (No. 50808068) The Ph.D. Programs Foundation of Ministry of Education of China (No. 200802941001).
文摘To solve the problem of vast cement and low strength in the treated sludge, clay mineral used for accessorial solidification material was applied to advance strength. The principle of solidification sludge strength because of clay mineral is not clear and has not supported the choice of clay mineral. The mineral and pore water is analyzed in order to contrast clay mineral added or not based on the XRD and pore water chemical character. The result shows that the absorbed quantity of Ca2~ was reduced by sludge because of clay mineral added, the hydrated reaction was advanced and integrated solidified materials was formed.
基金Project(51102035)supported by the National Natural Science Foundation of China
文摘Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the CAS Key Laboratory of Carbon Materials,China(No.KLCMKFJJ2005)the Fund of Aerospace Research Institute of Material and Processing Technology,China(No.6142906200108).
文摘To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.
文摘The steady two-dimensional flow of Powell-Eyring fluid is investigated. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. The governing nonlinear differential equations are reduced to the ordinary differential equations by similarity transformations. The analytic solutions are presented in series forms by homotopy analysis method(HAM). Convergence of the obtained series solutions is explicitly discussed. The physical significance of different parameters on the velocity and concentration profiles is discussed through graphical illustrations. It is noticed that the boundary layer thickness increases by increasing the Powell-Eyring fluid material parameter(ε) whereas it decreases by increasing the fluid material parameter(δ). Further, the concentration profile increases when Powell-Eyring fluid material parameters increase. The concentration is also an increasing function of Schmidt number and decreasing function of strength of homogeneous reaction. Also mass transfer rate increases for larger rate of heterogeneous reaction.
文摘In order to improve the nonlinear optical property and stability of azo-dye chromophore, the nonlinear optical polyimide (NLOPI) attached with azo chromophore side chain is synthesized by diazo coupling reaction of 4-nitrobenzenediazonium tetrafloroborate. The designed chemical structure of production can be proved in the infrared spectrum and ultraviolet-visible absorption spectrum. The NLOPI exhibited UV-Vis absorption of the azobenzene chromophore in the vicinity of the wavelengths of 330 and 490 nm. The broad amorphous peak proved that the NLOPI was amorphous with a little periodical structure along the side chain. According to transmission electron microscope, the NLOPI film was homogeneous. NLOPI only displayed a decrease in mass of about 5% at the temperature of 400 ℃ through thermogravimetric analysis.
基金Supported by the Graduate Innovative Fund of Wuhan Institute of Technology(CX2013019)
文摘The non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends was investigated by differential scanning calorimetry(DSC). The Mo equation was employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. The results show that the crystallization onset temperature(T onset) and crystallization peak temperature(T p) decrease with the increase of the content of reactive microgel, while ΔT(T onset–T p), the crystallization half-time(t1/2) and the crystallization enthalpy(ΔH c) increase. The required cooling rates of blends are higher than that of neat nylon6 in order to achieve the same relative crystallinity in a unit of time. The crystallization activation energies of the reactive microgel/nylon 6 blends are greater than those of the neat nylon 6. When the content of reactive microgel is 30%, the relative crystallinity(X t) reaches the maximum.
文摘Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, thorium was restricted to use for gas mantles, especially in the early 20th century. In the beginning of the nuclear era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65,000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, there will be a significant increasing in the uranium prices occur, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, ^232Th can be converted to ^233U (fissile) more efficiently than ^238U to ^239pu. Besides this, since it is possible to convert thorium waste into non-radioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1,200,000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use.
文摘V-4Cr-4Ti is the leading candidate vanadium alloy for fusion applications as structural material of first wall and blanket. Due to the interaction between Ti and interstitial solutes of C, N, and O, precipitation occurs at elevated temperature. The behavior has been studied in the past few years by short time annealing and results showed that it may greatly affect its mechanical properties Ti-CON type precipitates, appearing at- 700℃ in the solid-solution annealed alloy in high number density and small size, strengthen the alloy significantly and reduce its ductility. As the ductility reduction is in an acceptable level, the strengthening might be utilized for a light and strong vanadium alloy structure. Before a conclusion, uncertainty of its thermal stability should be studied during the high temperature serves. Besides, seldom has been studied for the effect of long time aging on precipitation behavior and tensile properties of the alloy.
基金jointly supported by the National Key Research and Development Program of China(2017YFA0206500and 2018YFA0209103)the National Natural Science Foundation of China(21832003,21773111,51571110 and 21573107)the Fundamental Research Funds for the Central Universities(020514380126)
文摘Cobalt-based oxygenic compounds Co(OH)2,CoO and Co3 O4 are attractive for electrochemical energy storage owing to their high theoretical capacities and pseudocapacitive properties.Despite the great efforts to their compositional and morphological regulations,the performances to date are still quite limited owing to the low active surface area and sluggish charge transfer kinetics.Herein,different Co-based nanocrystals(Co-NCs)were conveniently anchored on the hierarchical nitrogen-doped carbon nanocages(hNCNCs)with high specific surface area and coexisting micro-meso-macropores to decrease the size and facilitate the charge transfer.Accordingly,a high specific capacity of1170 Fg^-1 is achieved at 2 Ag^-1 for the Co(OH)2/hNCNCs hybrid,in which the capacitance of Co(OH)2(2214 F gco(OH)2)is approaching to its theoretical maximum(2595 Fg^-1),demonstrating the high utilization of active materials by the hybridization with N-doped nanocarbons.This study also reveals that these Co-NCs store/release electrical energy via the same reversible redox reaction despite their different pristine compositions.This insight on the energy storage of Co-based nanomaterials suggests that the commonly-employed transformation of the Co-NCs from Co(OH)2 to CoO and Co3 O4 on carbon supports is unnecessary and even could be harmful to the energy storage performance.The result is instructive to develop high-energy-density electrodes from transition metal compounds.
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.
文摘N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high specific area (1,485 m2.g-l), high nitrogen content (10.8%) and suitable graphitic degree results in catalysts exhibiting high activity (with onset and half-wave potentials of 0.88 and 0.79 V vs the reversible hydrogen electrode (RHE), respectively) and four-electron selectivity for the oxygen reduction reaction (ORR) in alkaline medium---comparable to a commercial Pt/C catalyst, but far exceeding Pt/C in stability and durability. Owing to their superb ORR performance, low cost and facile preparation, the catalysts have great potential applications in fuel cells, metal-air batteries, and ORR-related electrochemical industries.
基金supported by the National Natural Science Foundation of China(52173189 and 22105208)。
文摘Device stability becomes one of the most crucial issues for the commercialization of organic solar cells(OSCs) after high power conversion efficiencies have been achieved. Besides the intrinsic stability of photoactive materials, the chemical/catalytic reaction between interfacial materials and photoactive materials is another critical factor that determines the stability of OSC devices. Herein, we design and synthesize a reaction-inert rylene diimide-embedded hyperbranched polymer named as PDIEIE, which effectively reduces the work function of indium tin oxide electrode from 4.62 to 3.65 eV. Meanwhile, PDIEIE shows negligible chemical reaction with high-performance photoactive materials and no catalytic effect under strong ultraviolet illumination, resulting in much better photo-stability of OSCs with PDIEIE cathode interlayer(CIL), relative to the traditional CILs, including most-widely used metal oxides and polyethyleneimine derivatives.
基金supported by the National Natural Science Foundation of China(22008032,12105048,and 22078104)Guangdong Basic and Applied Basic Research Foundation(2019A1515110706 and 2020A1515110817)+5 种基金the Science and Technology Key Project of Guangdong Province,China(2020B010188002)the Special Innovation Projects of Universities in Guangdong Province(2018KTSCX240)the Innovation Team of Universities in Guangdong Province(2020KCXTD011)the Engineering Research Center of Universities in Guangdong Province(2019GCZX002)Guangdong Key Laboratory for Hydrogen Energy Technologies(2018B030322005)Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)。
文摘Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied in diverse applications,especially in heterogeneous catalysis.The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic guest molecules to exploit more possibilities with enhanced catalytic performance.In this review,we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis,which includes oxidation reaction,hydrogenation reaction,and condensation reaction.Emphasis is placed on the multiple functions of hierarchical structures,and the catalytic activity,selectivity,stability,recyclability,etc.of the industrial utility of H-MOFs.Finally,the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.