A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo...A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.展开更多
The influence of active metal components of catalyst, additives and catalyst preparation method on the reactivity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 c...The influence of active metal components of catalyst, additives and catalyst preparation method on the reactivity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 catalyst with high HDS performance and the RSDS-22 catalyst with high selectivity were developed by RIPP. The composite loading of a new series of catalysts for selective HDS of FCC gasoline has demonstrated excellent desulfurization activity and selectivity and can under conventional hydrotreating conditions manufacture clean gasoline product meeting the national IV emission standard and the Euro V emission standard with less loss in antiknock index. The finalized new series of FCC catalysts upon being adopted for selective HDS of FCC naphtha have good adaptability to different feedstocks along with good stability.展开更多
Promoted by active indium produced in situ by Sm/InCl3 ?4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions ...Promoted by active indium produced in situ by Sm/InCl3 ?4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions in aqueous media.展开更多
This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement pa...This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement paste. Reactive aggregates use meta-sandstone from eastern Taiwan and Pyrex glass. Non-reactive aggregates use siliceous sand. The results show that the dissolved amount of SiO2 is lower when the reactive aggregates are immersed in an 80 ℃1 N LiOH'H20 solution than in NaOH and KOH solutions. The reduced amounts of OH and Li+ in the solution are also higher than those in the NaOH and KOH solutions. These results reveal that reactive SiO2 can react with LiOH to form a reactant with low water solubility. When the powder of the cement paste is immersed in an 80 ℃ 1 N LiOH-H2O solution, the amounts of free Na+ and K+ in the solution are higher than those in water. The increased amount increases with the duration of immersion. The amount of Li+ in the solution also decreases with the duration of immersion. These results reveal that Li+ can substitute Na+ and K+ that are unified in cement paste, which indicates that ASR can be prevented with the existence of Li+.展开更多
The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high cata...The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF, Pt/Cu/ACF and Co/Cu/ACF have very low catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.展开更多
The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studi...The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction(XRD), Brunauer–Emmett–Teller(BET) analysis, inductively coupled plasma-atomic emission spectrometry(ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen(H_2-TPR) and scanning electron microscopy(SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a fixed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO_2 conversion at all temperature level. The time-on-stream(TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60h for both catalysts. The Fe-Mo/Al_2O_3 catalyst exhibits good stability within a period of 60h, however, the Co-Mo/Al_2O_3 is gradually deactivated after 50h of reaction time. Existence of(Fe_2(MoO4_))_3 phase in Fe-Mo/Al_2O_3 catalyst makes this catalyst more stable for RWGS reaction.展开更多
Water electrolysis is one of the most promising approaches for producing hydrogen.However,it has been hindered by the sluggishness of the anodic oxygen evolution reaction.In this work,we fabricated Ru-Co-Mn trimetalli...Water electrolysis is one of the most promising approaches for producing hydrogen.However,it has been hindered by the sluggishness of the anodic oxygen evolution reaction.In this work,we fabricated Ru-Co-Mn trimetallic alloy nanoparticles on N-doped carbon support(RuCoMn@NC)via the pyrolysis-adsorption-pyrolysis process using ZIF-67 as a precursor.The RuCoMn@NC catalyst exhibited excellent electrocatalytic performance for the hydrogen evolution reaction(HER)over a wide range of pH and glucose oxidation reaction in alkaline media.It showed exceptional HER activity in alkaline medium,superior to that of the commercial Pt/C catalyst(20 wt%),and good electrochemical stability.Further,a two-electrode alkaline electrolyzer pairing RuCoMn@NC as both cathode and anode was employed,and only a cell voltage of 1.63 V was required to attain a current density of 10 mA cm^(-2)in glucose electrolysis,which is about 270 mV lower than that in the overall water-splitting electrolyzer.This paper provides a promising method for developing efficiently bifunctional electrocatalysts driving redox electrocatalysis,and it would be beneficial to energy-saving electrolytic H_(2) production.展开更多
High-entropy ceramics(HECs) are gaining significant interest due to their huge composition space, unique microstructure, and adjustable properties. Previously reported studies focus mainly on HECs with the multi-catio...High-entropy ceramics(HECs) are gaining significant interest due to their huge composition space, unique microstructure, and adjustable properties. Previously reported studies focus mainly on HECs with the multi-cationic structure, while HECs with more than one anion are rarely studied. Herein we reported a new class of HECs, namely highentropy alumino-silicides(Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2(HEAS-1) with multi-cationic and-anionic structure. The formation possibility of HEAS-1 was first theoretically analyzed from the aspects of thermodynamics and lattice size difference based on the first-principles calculations and then the HEAS-1 were successfully synthesized by the solid-state reaction at 1573K. The as-synthesized HEAS-1 exhibited good single-crystal hexagonal structure of metal alumino-silicides and simultaneously possessed high compositional uniformity.This study not only enriches the categories of HECs but also will open up a new research field on HECs with multi-cationic and-anionic structure.展开更多
It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constr...It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constructed to display satisfactory OER activity and good stability for water splitting in alkaline media.At an overpotential of 300 mV,NiFe LDH@CoP/NiP_(3) achieved a current density of 82 mA cm^(-2) for the OER,which was 9.1 and 2.3 times that of CoP/NiP_(3) and NiFe LDH,respectively.Moreover,the reconstruction behavior,during which oxyhydroxides formed,was studied by a combination of X-ray photoelectron spectroscopy,Raman spectroscopy,and scanning electron microscopy.A synergistic effect between NiFe LDH and CoP/NiP_(3) was also observed for the hydrogen evolution reaction.Furthermore,when NiFe LDH@CoP/NiP_(3) acted as both the cathode and anode for overall water splitting,a high current density of 100 mA cm^(-2) was maintained for more than 275 h.In addition,under Xe light irradiation,a solar-to-hydrogen efficiency of 9.89% was achieved for solar-driven water splitting.This work presents the coupling of different active compositions,and can provide a reference for designing bifunctional electrocatalysts.展开更多
In the past thirty years,transition metal catalyzed silylation of inert C–H bonds has attracted intensive attention due to the importance and wide use of organosilicon compounds.In this review,the silylation reaction...In the past thirty years,transition metal catalyzed silylation of inert C–H bonds has attracted intensive attention due to the importance and wide use of organosilicon compounds.In this review,the silylation reactions of inert C–H bonds catalyzed by transition metal complexes of Ir,Rh,Ru,Pt,Pd,Ni,and Sc,and the strategies utilized to access the site-selective C–H silylation products have been summarized.Furthermore,the mechanisms of C–H silylation reactions have been discussed briefly.展开更多
Hexamethylenediamine(HMDA) is an important reagent for the synthesis of Nylon-6,6, and it is usually produced by the hydrogenation of adiponitrile using a toxic reagent of hydrocyanic acid. Herein, we developed an env...Hexamethylenediamine(HMDA) is an important reagent for the synthesis of Nylon-6,6, and it is usually produced by the hydrogenation of adiponitrile using a toxic reagent of hydrocyanic acid. Herein, we developed an environmental friendly route to produce HMDA via catalytic reductive amination of 1,6-hexanediol(HDO) in the presence of hydrogen. The activities of several heterogeneous metal catalysts such as supported Ni, Co, Ru, Pt, Pd catalysts were screened for the present reaction in supercritical ammonia without any additives. Among the catalysts examined, Ru/Al_2O_3 presented a high catalytic activity and highest selectivity for the desired product of HMDA. The high performance of Ru/Al_2O_3 was discussed based on the Ru dispersion and the surface properties like the acid-basicity. In addition, the reaction parameters such as reaction temperature,time, H_2 and NH_3 pressure were examined, and the reaction processes were discussed in detail.展开更多
Optical near-field excitations were investigated on the basis of molecular alignment control of liquid crystals (LCs) on an optically rewritable nanostructure of photoreactive molecular thin films. Twisted nematic (TN...Optical near-field excitations were investigated on the basis of molecular alignment control of liquid crystals (LCs) on an optically rewritable nanostructure of photoreactive molecular thin films. Twisted nematic (TN) cells of LC molecules were constructed utilizing ITO substrates with 260 nm gratings of an azobenzene molecular thin film, fabricated using standing evanescent waves. The polarization changes of light transmitted through the TN cells, which were due to the alignment changes of LC molecules locally rubbed by the azobenzene nanogratings, were observed. Furthermore, we demonstrated local plasmon excitation of Au nanowires deposited on the azobenzene nanogratings using oblique vacuum evaporation, a phenomenon that produced strong anti-optical absorption spectra. The modulation of the local plasmon resonance in metallic nanowires decorated with LC molecules was confirmed.展开更多
文摘A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.
文摘The influence of active metal components of catalyst, additives and catalyst preparation method on the reactivity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 catalyst with high HDS performance and the RSDS-22 catalyst with high selectivity were developed by RIPP. The composite loading of a new series of catalysts for selective HDS of FCC gasoline has demonstrated excellent desulfurization activity and selectivity and can under conventional hydrotreating conditions manufacture clean gasoline product meeting the national IV emission standard and the Euro V emission standard with less loss in antiknock index. The finalized new series of FCC catalysts upon being adopted for selective HDS of FCC naphtha have good adaptability to different feedstocks along with good stability.
文摘Promoted by active indium produced in situ by Sm/InCl3 ?4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions in aqueous media.
文摘This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement paste. Reactive aggregates use meta-sandstone from eastern Taiwan and Pyrex glass. Non-reactive aggregates use siliceous sand. The results show that the dissolved amount of SiO2 is lower when the reactive aggregates are immersed in an 80 ℃1 N LiOH'H20 solution than in NaOH and KOH solutions. The reduced amounts of OH and Li+ in the solution are also higher than those in the NaOH and KOH solutions. These results reveal that reactive SiO2 can react with LiOH to form a reactant with low water solubility. When the powder of the cement paste is immersed in an 80 ℃ 1 N LiOH-H2O solution, the amounts of free Na+ and K+ in the solution are higher than those in water. The increased amount increases with the duration of immersion. The amount of Li+ in the solution also decreases with the duration of immersion. These results reveal that Li+ can substitute Na+ and K+ that are unified in cement paste, which indicates that ASR can be prevented with the existence of Li+.
基金Major Natural Science Foundation of Guangdong Province, The Team Project of Guangdong Province and the Talent Training Program Foundation of the Higher Education Department of Gangdong Province.
文摘The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF, Pt/Cu/ACF and Co/Cu/ACF have very low catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.
基金the Iranian Nano Technology Initiative Council and the Petroleum University of Technology for financial support
文摘The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction(XRD), Brunauer–Emmett–Teller(BET) analysis, inductively coupled plasma-atomic emission spectrometry(ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen(H_2-TPR) and scanning electron microscopy(SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a fixed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO_2 conversion at all temperature level. The time-on-stream(TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60h for both catalysts. The Fe-Mo/Al_2O_3 catalyst exhibits good stability within a period of 60h, however, the Co-Mo/Al_2O_3 is gradually deactivated after 50h of reaction time. Existence of(Fe_2(MoO4_))_3 phase in Fe-Mo/Al_2O_3 catalyst makes this catalyst more stable for RWGS reaction.
基金supported by the National Natural Science Foundation of China(52072035,51631001,21801015,51902023 and 51872030)the Fundamental Research Funds for the Central Universities(2017CX01003)+1 种基金Beijing Institute of Technology Research Fund Program for Young Scholarsthe Joint R&D Plan of Hong Kong,Macao,Taiwan,and Beijing(Z191100001619002).
文摘Water electrolysis is one of the most promising approaches for producing hydrogen.However,it has been hindered by the sluggishness of the anodic oxygen evolution reaction.In this work,we fabricated Ru-Co-Mn trimetallic alloy nanoparticles on N-doped carbon support(RuCoMn@NC)via the pyrolysis-adsorption-pyrolysis process using ZIF-67 as a precursor.The RuCoMn@NC catalyst exhibited excellent electrocatalytic performance for the hydrogen evolution reaction(HER)over a wide range of pH and glucose oxidation reaction in alkaline media.It showed exceptional HER activity in alkaline medium,superior to that of the commercial Pt/C catalyst(20 wt%),and good electrochemical stability.Further,a two-electrode alkaline electrolyzer pairing RuCoMn@NC as both cathode and anode was employed,and only a cell voltage of 1.63 V was required to attain a current density of 10 mA cm^(-2)in glucose electrolysis,which is about 270 mV lower than that in the overall water-splitting electrolyzer.This paper provides a promising method for developing efficiently bifunctional electrocatalysts driving redox electrocatalysis,and it would be beneficial to energy-saving electrolytic H_(2) production.
基金supported by the National Key Research and Development Program of China (2017YFB0703200)Young Elite Scientists Sponsorship Program by China Association for Science and Technology (2017QNRC001)the National Natural Science Foundation of China (51802100 and 51972116)
文摘High-entropy ceramics(HECs) are gaining significant interest due to their huge composition space, unique microstructure, and adjustable properties. Previously reported studies focus mainly on HECs with the multi-cationic structure, while HECs with more than one anion are rarely studied. Herein we reported a new class of HECs, namely highentropy alumino-silicides(Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2(HEAS-1) with multi-cationic and-anionic structure. The formation possibility of HEAS-1 was first theoretically analyzed from the aspects of thermodynamics and lattice size difference based on the first-principles calculations and then the HEAS-1 were successfully synthesized by the solid-state reaction at 1573K. The as-synthesized HEAS-1 exhibited good single-crystal hexagonal structure of metal alumino-silicides and simultaneously possessed high compositional uniformity.This study not only enriches the categories of HECs but also will open up a new research field on HECs with multi-cationic and-anionic structure.
基金financially supported by Hunan Provincial Science and Technology Plan Project(2017TP1001 and2020JJ4710)the National Key R&D Program of China(2018YFB0704100)the State Key Laboratory Fund。
文摘It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constructed to display satisfactory OER activity and good stability for water splitting in alkaline media.At an overpotential of 300 mV,NiFe LDH@CoP/NiP_(3) achieved a current density of 82 mA cm^(-2) for the OER,which was 9.1 and 2.3 times that of CoP/NiP_(3) and NiFe LDH,respectively.Moreover,the reconstruction behavior,during which oxyhydroxides formed,was studied by a combination of X-ray photoelectron spectroscopy,Raman spectroscopy,and scanning electron microscopy.A synergistic effect between NiFe LDH and CoP/NiP_(3) was also observed for the hydrogen evolution reaction.Furthermore,when NiFe LDH@CoP/NiP_(3) acted as both the cathode and anode for overall water splitting,a high current density of 100 mA cm^(-2) was maintained for more than 275 h.In addition,under Xe light irradiation,a solar-to-hydrogen efficiency of 9.89% was achieved for solar-driven water splitting.This work presents the coupling of different active compositions,and can provide a reference for designing bifunctional electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(21322203,21272238,21472194)the National Basic Research Program of China(2012CB821600)
文摘In the past thirty years,transition metal catalyzed silylation of inert C–H bonds has attracted intensive attention due to the importance and wide use of organosilicon compounds.In this review,the silylation reactions of inert C–H bonds catalyzed by transition metal complexes of Ir,Rh,Ru,Pt,Pd,Ni,and Sc,and the strategies utilized to access the site-selective C–H silylation products have been summarized.Furthermore,the mechanisms of C–H silylation reactions have been discussed briefly.
基金supported by the National Basic Research Program of China(2016YFA0602900)Youth Innovation Promotion Association CAS(2016206)Jilin Provincial Science and Technology Program of China(20150301012GX)
文摘Hexamethylenediamine(HMDA) is an important reagent for the synthesis of Nylon-6,6, and it is usually produced by the hydrogenation of adiponitrile using a toxic reagent of hydrocyanic acid. Herein, we developed an environmental friendly route to produce HMDA via catalytic reductive amination of 1,6-hexanediol(HDO) in the presence of hydrogen. The activities of several heterogeneous metal catalysts such as supported Ni, Co, Ru, Pt, Pd catalysts were screened for the present reaction in supercritical ammonia without any additives. Among the catalysts examined, Ru/Al_2O_3 presented a high catalytic activity and highest selectivity for the desired product of HMDA. The high performance of Ru/Al_2O_3 was discussed based on the Ru dispersion and the surface properties like the acid-basicity. In addition, the reaction parameters such as reaction temperature,time, H_2 and NH_3 pressure were examined, and the reaction processes were discussed in detail.
基金supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan
文摘Optical near-field excitations were investigated on the basis of molecular alignment control of liquid crystals (LCs) on an optically rewritable nanostructure of photoreactive molecular thin films. Twisted nematic (TN) cells of LC molecules were constructed utilizing ITO substrates with 260 nm gratings of an azobenzene molecular thin film, fabricated using standing evanescent waves. The polarization changes of light transmitted through the TN cells, which were due to the alignment changes of LC molecules locally rubbed by the azobenzene nanogratings, were observed. Furthermore, we demonstrated local plasmon excitation of Au nanowires deposited on the azobenzene nanogratings using oblique vacuum evaporation, a phenomenon that produced strong anti-optical absorption spectra. The modulation of the local plasmon resonance in metallic nanowires decorated with LC molecules was confirmed.