The asymptotic behaviour of solutions for general partly dissipative reaction-diffusion systems in Rn is studied. The asymptotic compactness of the solutions and then the existence of the global attractor are proved i...The asymptotic behaviour of solutions for general partly dissipative reaction-diffusion systems in Rn is studied. The asymptotic compactness of the solutions and then the existence of the global attractor are proved in L2(Rn )× L2(Rn ) .展开更多
By means of a nonstandard estimation about the energy functional, the authors prove the existence of a global attractor for an abstract nonlinear evolution equation. As an application, the existence of a global attrac...By means of a nonstandard estimation about the energy functional, the authors prove the existence of a global attractor for an abstract nonlinear evolution equation. As an application, the existence of a global attractor for some nonlinear reaction-diffusion equations with some distribution derivatives in inhomogeneous terms is obtained.展开更多
In this paper, we present a diffusive predator prey system with Beddington-DeAngelis funetionM response, where the prey species can disperse between the two patches, and there is competition between the two predators....In this paper, we present a diffusive predator prey system with Beddington-DeAngelis funetionM response, where the prey species can disperse between the two patches, and there is competition between the two predators. Sufficient conditions for the permanence and extinction of system are established based on the upper and lower solution meth- ods and comparison theory of differential equation. Furthermore, the global asymptotic stability of positive solutions is obtained by constructing a suitable Lyapunov function. By using the continuation theorem in coincidence degree theory, we show the periodicity of positive solutions. Finally, we illustrate global asymptotic stability of the model by a simulation figure.展开更多
In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative ...In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative integer. As a result, hyperbolic function solutions and trigonometric function solutions with free parameters are obtained. When the parameters are taken as special values the solitary wave solutions and the periodic wave solutions are also derived from the traveling wave solutions. Moreover, it is observed that the suggested techniques is compatible of such problems.展开更多
文摘The asymptotic behaviour of solutions for general partly dissipative reaction-diffusion systems in Rn is studied. The asymptotic compactness of the solutions and then the existence of the global attractor are proved in L2(Rn )× L2(Rn ) .
基金Project supported by the National Natural Science Foundation of China (No. 19971036)the Trans-Century Training Programme Foundation for the Talents by the Ministry of Education of China.
文摘By means of a nonstandard estimation about the energy functional, the authors prove the existence of a global attractor for an abstract nonlinear evolution equation. As an application, the existence of a global attractor for some nonlinear reaction-diffusion equations with some distribution derivatives in inhomogeneous terms is obtained.
基金The authors are grateful to their classmates and teachers for comments and valuable suggestions. This work is supported by the National Natural Science Foundation of China (No. 70672103).
文摘In this paper, we present a diffusive predator prey system with Beddington-DeAngelis funetionM response, where the prey species can disperse between the two patches, and there is competition between the two predators. Sufficient conditions for the permanence and extinction of system are established based on the upper and lower solution meth- ods and comparison theory of differential equation. Furthermore, the global asymptotic stability of positive solutions is obtained by constructing a suitable Lyapunov function. By using the continuation theorem in coincidence degree theory, we show the periodicity of positive solutions. Finally, we illustrate global asymptotic stability of the model by a simulation figure.
文摘In this paper, by introducing a proper transformation, the (Gr/G)-expansion method is further extended into the nonlinear reaction diffusion equations in mathematical biology whose balancing numbers may be negative integer. As a result, hyperbolic function solutions and trigonometric function solutions with free parameters are obtained. When the parameters are taken as special values the solitary wave solutions and the periodic wave solutions are also derived from the traveling wave solutions. Moreover, it is observed that the suggested techniques is compatible of such problems.