The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) ...The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.展开更多
Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leach...Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leaching agent concentration, leaching temperature, leaching cumulative time and solid-to-liquid ratio. The thermodynamics and kinetics of the zinc leaching process were also analyzed. The results show that the EAF dust contains 10% (mass fraction) zinc and the median particle size is 0.69 μm. The zinc recovery of 73.4% is obtained tinder the condition of 90 ℃, 6 mol/L NaOH, and 60 min leaching time. With the increase of concentration of NaOH and the cumulative time, zinc leaching will be significantly increased. The kinetics study demonstrates that the leaching reaction is chemically controlled and the reaction activation energy is 15.73 kJ/mol.展开更多
Stereochemical control is an important issue in carbohydrate synthesis.Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation ba...Stereochemical control is an important issue in carbohydrate synthesis.Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition.In this work,the effects of additives and reaction solvents on stereoselectivity were examined using donors without participating protective groups on 2-O.While several triflate salt additives did not have major effects,the amount of AgOTf was found to significantly impact the reaction outcome.Excess AgOTf led to lower stereochemical control presumably due to its coordination with the glycosyl triflate intermediate and a more SN1 like reaction pathway.In contrast,the stereoselectivity could be directed by reaction solvents,with diethyl ether favoring the formation of glycosides and dichloromethane leading to β isomers.The trend of stereochemical dependence on reaction solvent was applicable to a variety of building blocks including the selective formation of β-mannosides.展开更多
Effects of an electric field on CO oxidation of Au-embedded graphene are investigated using first-principles method. Results of our calculations show that the initial step of the reaction is more likely to proceed via...Effects of an electric field on CO oxidation of Au-embedded graphene are investigated using first-principles method. Results of our calculations show that the initial step of the reaction is more likely to proceed via the Langmuir-Hinshelwood mechanism in the presence of the field, and the reaction barrier can be tuned continuously by the electric field. However, the applied electric field makes it more difficult for the product of the reaction, CO2, to desorb from the reaction site. These two competing effects make an electric field not entirely advantageous in controlling the activity of Au-embedded graphene for CO oxidation reaction. Nevertheless, the findings of our study provide a basis for further investigation on control of chemical reactions by electric fields.展开更多
The properties of materials are strongly dependent on their structures. The diffusion effect is a main kinetic factor that can be used to regulate the growth and structure of materials. In this work, we developed a sy...The properties of materials are strongly dependent on their structures. The diffusion effect is a main kinetic factor that can be used to regulate the growth and structure of materials. In this work, we developed a systematic and feasible strategy to synthesize Cu2O solid spheres and hexahedrons by controlling the diffusion coefficients. These Cu2O products can be successively transformed into corresponding Cu hollow spheres and hexahedrons as well as CuO porous spheres and hexahedrons by controlling hydrogen diffusion in hydrazine hydrate solution and controlling oxygen diffusion in air, respectively. The formation of these transformations was also discussed in detail. Tested for Rochow reaction, the as-prepared Cu2O solid and CuO porous spheres exhibit higher dimethyldichlorosilane selectivity and Si conversion than Cu hollow spheres, which is attributed to the active sites for CH3Cl adsorption formed in CuxSi phase after the removal of oxygen atoms in Cn2O and CuO in the formation of dimethylchlorosilane. The present work not only develops a feasible method for preparing well shape-defined Cu2O solid spheres and hexahedrons but also clarifies the respective roles of Cu, Cu2O and CuO in dimethyldichlorosilane synthesis via Rochow reaction.展开更多
基金Supported by the National Natural Science Foundation of China (20576025). the National Key Basic Project of China (2005CCA06100), the Science and Technological Research and Development Project of Hebei Province (07215602D) and the Natural Science Foundation of Hebei Province 032007000010).
文摘The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.
基金Project(20876014) supported by the National Natural Science Foundation of China
文摘Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leaching agent concentration, leaching temperature, leaching cumulative time and solid-to-liquid ratio. The thermodynamics and kinetics of the zinc leaching process were also analyzed. The results show that the EAF dust contains 10% (mass fraction) zinc and the median particle size is 0.69 μm. The zinc recovery of 73.4% is obtained tinder the condition of 90 ℃, 6 mol/L NaOH, and 60 min leaching time. With the increase of concentration of NaOH and the cumulative time, zinc leaching will be significantly increased. The kinetics study demonstrates that the leaching reaction is chemically controlled and the reaction activation energy is 15.73 kJ/mol.
基金the National Institutes of Health (R01-GM-72667) for financial support of this work
文摘Stereochemical control is an important issue in carbohydrate synthesis.Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition.In this work,the effects of additives and reaction solvents on stereoselectivity were examined using donors without participating protective groups on 2-O.While several triflate salt additives did not have major effects,the amount of AgOTf was found to significantly impact the reaction outcome.Excess AgOTf led to lower stereochemical control presumably due to its coordination with the glycosyl triflate intermediate and a more SN1 like reaction pathway.In contrast,the stereoselectivity could be directed by reaction solvents,with diethyl ether favoring the formation of glycosides and dichloromethane leading to β isomers.The trend of stereochemical dependence on reaction solvent was applicable to a variety of building blocks including the selective formation of β-mannosides.
基金supported by the National Research Foundation (Singapore) Competitive Research Program (Grant No. NRF-G-CRP 2007-05)
文摘Effects of an electric field on CO oxidation of Au-embedded graphene are investigated using first-principles method. Results of our calculations show that the initial step of the reaction is more likely to proceed via the Langmuir-Hinshelwood mechanism in the presence of the field, and the reaction barrier can be tuned continuously by the electric field. However, the applied electric field makes it more difficult for the product of the reaction, CO2, to desorb from the reaction site. These two competing effects make an electric field not entirely advantageous in controlling the activity of Au-embedded graphene for CO oxidation reaction. Nevertheless, the findings of our study provide a basis for further investigation on control of chemical reactions by electric fields.
基金supported by the National Natural Science Foundation of China (21506224)the Institute of Chemical and Engineering Sciences (ICES) for the kind support of the collaboration
文摘The properties of materials are strongly dependent on their structures. The diffusion effect is a main kinetic factor that can be used to regulate the growth and structure of materials. In this work, we developed a systematic and feasible strategy to synthesize Cu2O solid spheres and hexahedrons by controlling the diffusion coefficients. These Cu2O products can be successively transformed into corresponding Cu hollow spheres and hexahedrons as well as CuO porous spheres and hexahedrons by controlling hydrogen diffusion in hydrazine hydrate solution and controlling oxygen diffusion in air, respectively. The formation of these transformations was also discussed in detail. Tested for Rochow reaction, the as-prepared Cu2O solid and CuO porous spheres exhibit higher dimethyldichlorosilane selectivity and Si conversion than Cu hollow spheres, which is attributed to the active sites for CH3Cl adsorption formed in CuxSi phase after the removal of oxygen atoms in Cn2O and CuO in the formation of dimethylchlorosilane. The present work not only develops a feasible method for preparing well shape-defined Cu2O solid spheres and hexahedrons but also clarifies the respective roles of Cu, Cu2O and CuO in dimethyldichlorosilane synthesis via Rochow reaction.