The mercury sulfidation experiments were conducted in the pH range from 1 to 13. The results show that Hg(II) reacted with equimolar S( II ) has the lowest remained Hg(II ) concentration (9.7 μg/L) at pH 1.0 ...The mercury sulfidation experiments were conducted in the pH range from 1 to 13. The results show that Hg(II) reacted with equimolar S( II ) has the lowest remained Hg(II ) concentration (9.7 μg/L) at pH 1.0 and the highest remained concentration (940.8μg/L) at pH 13.0. Meanwhile, the changes of pH values were monitored exactly, which reveal that solution pH values change when mixing the same pH value solutions of HgCI2 and Na2S. In order to explain the phenomena and determine the reaction paths of Hg(II) reacting with S( II ) in the solution, the concerned thermodynamics was studied. Species of S( II )-H2O system and Hg(II)-H2O system at different pH values were calculated, and then the species distribution diagrams of S(II)-H2O system, Hg( II )-H2O system and Hg( II )-Cl-OH--H20 system were drawn. Combining the experimental data and thermodynamic calculation, the mechanism of Hg(II) reacting with S(II) was deduced. The results indicate that different species of S( II ) and Hg(II) have the diverse reaction paths to form HgS precipitate at different pH values and the standard Gibbs free energies change (△tGm^⊙) of those equations are also calculated, which can provide a guidance for mercury-containing wastewater treatment with Na2S.展开更多
To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.Th...To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.展开更多
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the Key Project of the National Natural Science Foundation of China+2 种基金Project(308019) supported by the Key Science and Technical Project of Ministry of Science and Technology of ChinaProject(2007BAC25B01) supported by the National Key Project of Science and Technical Supporting Programs Funded by Ministry of Science and Technology of China during the 11th Five-Year PlanProject(08JJ3020) supported by the Natural Science Foundation of Hunan Province, China
文摘The mercury sulfidation experiments were conducted in the pH range from 1 to 13. The results show that Hg(II) reacted with equimolar S( II ) has the lowest remained Hg(II ) concentration (9.7 μg/L) at pH 1.0 and the highest remained concentration (940.8μg/L) at pH 13.0. Meanwhile, the changes of pH values were monitored exactly, which reveal that solution pH values change when mixing the same pH value solutions of HgCI2 and Na2S. In order to explain the phenomena and determine the reaction paths of Hg(II) reacting with S( II ) in the solution, the concerned thermodynamics was studied. Species of S( II )-H2O system and Hg(II)-H2O system at different pH values were calculated, and then the species distribution diagrams of S(II)-H2O system, Hg( II )-H2O system and Hg( II )-Cl-OH--H20 system were drawn. Combining the experimental data and thermodynamic calculation, the mechanism of Hg(II) reacting with S(II) was deduced. The results indicate that different species of S( II ) and Hg(II) have the diverse reaction paths to form HgS precipitate at different pH values and the standard Gibbs free energies change (△tGm^⊙) of those equations are also calculated, which can provide a guidance for mercury-containing wastewater treatment with Na2S.
基金The National Natural Science Foundations of China(No.51778133)the Transportation Science&Technology Project of Fujian Province(No.2017Y057)+1 种基金the China Railway Project(No.2017G007-C)Foundation of the China Scholarship Council(No.201906090163).
文摘To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.