期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
低温反应熔渗工艺制备AlN-SiC复相陶瓷及其性能研究
1
作者 孙小凡 陈小武 +3 位作者 靳喜海 阚艳梅 胡建宝 董绍明 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2023年第10期1223-1229,共7页
AlN-SiC复相陶瓷力学性能好、导热性与抗高温氧化性能优异,作为纤维增强陶瓷基复合材料的基体材料具有良好的应用前景。本研究以Si-Al合金为熔渗介质,多孔C-Si_(3)N_(4)为熔渗预制体,对低温反应熔渗制备AlN-SiC复相陶瓷及其性能展开研... AlN-SiC复相陶瓷力学性能好、导热性与抗高温氧化性能优异,作为纤维增强陶瓷基复合材料的基体材料具有良好的应用前景。本研究以Si-Al合金为熔渗介质,多孔C-Si_(3)N_(4)为熔渗预制体,对低温反应熔渗制备AlN-SiC复相陶瓷及其性能展开研究。研究发现Si-Al合金形态对反应熔渗过程存在着重要的影响:以Si-Al合金粉末作为熔渗介质时,反应熔渗过程中在Si-Al/C-Si_(3)N_(4)界面处将原位形成一层致密的Al–O阻挡层,从而严重阻碍Si-Al熔体向C-Si_(3)N_(4)预制体内部的渗透,使反应熔渗过程难以进行;以Si-Al合金锭作为熔渗介质时,Si-Al熔体可以深入渗透到多孔C-Si_(3)N_(4)预制体内部,并通过进一步反应,原位形成致密的AlN-SiC复相陶瓷。材料性能测试表明,所得材料的力学和热学性能与其内部残余硅含量关系密切。随着残余硅含量降低,材料强度明显提升,而热导率有所下降。含质量分数4%残余硅的AlN-SiC复相陶瓷,抗弯强度达到320.1 MPa,热导率达26.3 W·m^(–1)·K^(–1),材料的强度几乎与传统反应烧结SiC陶瓷相当,并深入探讨了出现上述现象的本质原因。本研究对低温熔渗工艺制备SiCf/AlN-SiC复合材料具有重要的指导意义。 展开更多
关键词 反应(rmi) AlN-SiC 机械性能 热导率
下载PDF
反应熔渗法制备C/C-ZrC复合材料的微观结构及烧蚀性能 被引量:10
2
作者 但奇善 孙威 +2 位作者 熊翔 王子璇 吴雯倩 《粉末冶金材料科学与工程》 EI 北大核心 2013年第3期403-408,共6页
采用反应熔渗法(reactive melt infiltration,RMI)制备ZrC改性多孔C/C复合材料,研究不同孔隙度的C/C多孔体在熔渗过程中的增密行为和渗Zr后的相组成及微观形貌,探寻具有最佳熔渗效果的C/C多孔体,并研究所得C/C-ZrC复合材料在不同温度下... 采用反应熔渗法(reactive melt infiltration,RMI)制备ZrC改性多孔C/C复合材料,研究不同孔隙度的C/C多孔体在熔渗过程中的增密行为和渗Zr后的相组成及微观形貌,探寻具有最佳熔渗效果的C/C多孔体,并研究所得C/C-ZrC复合材料在不同温度下的氧乙炔焰烧蚀行为。结果表明,随C/C多孔体密度增加,C/C-ZrC复合材料的密度降低;其中密度为1.40 g/cm3的多孔体熔渗效果最佳,开孔隙率由熔渗前的28.2%降低到6.6%。;熔渗的Zr液易与网胎层处的炭纤维和基体炭反应,生成的ZrC陶瓷相主要分布在原网胎层位置。择取原始密度为1.40 g/cm3的C/C多孔体熔渗后进行60 s的氧乙炔焰烧蚀实验,在3 000℃下的线烧蚀率和质量烧蚀率分别为0.003 3 mm/s和0.004 2 g/s,在2 500℃下的线烧蚀率和质量烧蚀率分别为0.008 0 mm/s和0.009 0 g/s,C/C-ZrC复合材料在3 000℃下的抗烧蚀性能明显优于2 500℃下的抗烧蚀性能。 展开更多
关键词 C C复合材料 反应法(rmi) ZRC 微观结构 烧蚀性能
下载PDF
熔渗温度和时间对C/C-SiC-ZrC复合材料性能的影响研究 被引量:9
3
作者 孔英杰 于新民 裴雨辰 《装备环境工程》 CAS 2016年第3期88-92,共5页
目的研究熔渗温度和熔渗时间对复合材料密度和弯曲性能的影响。方法采用化学气相渗透法(CVI)和聚合物浸渍裂解法(PIP)制备熔渗用低密度C/C复合材料,以Si0.9-Zr0.1合金为熔渗金属,采用反应熔渗法(RMI)制备C/C-SiC-ZrC复合材料。测试C/C-S... 目的研究熔渗温度和熔渗时间对复合材料密度和弯曲性能的影响。方法采用化学气相渗透法(CVI)和聚合物浸渍裂解法(PIP)制备熔渗用低密度C/C复合材料,以Si0.9-Zr0.1合金为熔渗金属,采用反应熔渗法(RMI)制备C/C-SiC-ZrC复合材料。测试C/C-SiC-ZrC复合材料的开孔率、密度、弯曲强度,分析试样的相组成。结果熔渗温度为1450℃时,复合材料的密度仅有1.97 g/cm3,弯曲强度仅为153 MPa;当熔渗温度升高到1550℃时,密度和弯曲强度分别升高到2.39 g/cm^3和260 MPa;而当熔渗温度升高到1650℃时,密度和弯曲强度又分别降为2.18 g/cm^3和208 MPa。1.5 h熔渗时复合材料的密度值最大,为2.46 g/cm^3,相对0.5 h熔渗的最小值提高了5.1%;1.0 h熔渗时复合材料材料的弯曲强度最高,达到了260 MPa,相对于1.5 h熔渗的最低值仅提高了3.2%。结论复合材料的致密度和弯曲强度随熔渗温度的升高先升高后降低,密度随熔渗时间的延长而增大,而弯曲强度随熔渗时间的延长先升高后降低,但密度和弯曲强度随熔渗时间的延长变化较小。 展开更多
关键词 反应法(rmi) C/C-SiC-ZrC 弯曲性能
下载PDF
SiC_(f)/SiC复合材料的RMI制备方法以及微观结构和性能优化 被引量:4
4
作者 张俊敏 陈小武 +4 位作者 廖春景 郭斐宇 杨金山 张翔宇 董绍明 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2021年第10期1103-1110,共8页
反应熔体渗透(RMI)是制备高密度陶瓷基复合材料的有效方法之一,而熔体的渗透和复合材料的形成主要取决于预制体的孔隙结构。本研究将硅熔体渗透到具有不同孔隙结构的含碳预制体中,制备了SiC纤维增强SiC基复合材料(SiC_(f)/SiC),并研究... 反应熔体渗透(RMI)是制备高密度陶瓷基复合材料的有效方法之一,而熔体的渗透和复合材料的形成主要取决于预制体的孔隙结构。本研究将硅熔体渗透到具有不同孔隙结构的含碳预制体中,制备了SiC纤维增强SiC基复合材料(SiC_(f)/SiC),并研究了孔隙结构对熔体浸润和SiC_(f)/SiC复合材料的影响。研究结果表明:具有较均匀孔径的预制体可以使熔体浸润更充分,制备的复合材料具有更少的残余孔隙及更优的力学性能。该研究对反应熔渗制备复合材料的孔结构调控具有指导意义。 展开更多
关键词 SiC_(f)/SiC复合材料 反应(rmi) 孔隙结构 微观结构 动力学
下载PDF
反应熔渗制备ZrC-SiC/(C/C)复合材料组织结构及耐烧蚀性能 被引量:3
5
作者 孙泽旭 周哲 +3 位作者 张贝 易君 易茂中 冉丽萍 《复合材料学报》 EI CAS CSCD 北大核心 2019年第10期2371-2379,共9页
采用反应熔渗法(RMI)制备出密度为3.288g/cm3的ZrC-SiC/(C/C)复合材料,采用SEM-EDS、XRD和TEM等分析手段研究了ZrC-SiC/(C/C)复合材料的微观组织结构。结果表明:陶瓷相填充充分且均匀分布在C/C复合材料基体中,其内部组织主要由ZrC、SiC... 采用反应熔渗法(RMI)制备出密度为3.288g/cm3的ZrC-SiC/(C/C)复合材料,采用SEM-EDS、XRD和TEM等分析手段研究了ZrC-SiC/(C/C)复合材料的微观组织结构。结果表明:陶瓷相填充充分且均匀分布在C/C复合材料基体中,其内部组织主要由ZrC、SiC、热解炭(PyC)和碳纤维(CF)组成。熔渗剂反应充分,复合材料内部未检测到残余未反应金属Zr、Si。采用氧乙炔烧蚀设备检测ZrC-SiC/(C/C)复合材料在2500℃下,烧蚀时间分别为30s、60s和90s的烧蚀性能,其质量烧蚀率分别为5.667mg/s、2.907mg/s和3.030mg/s,线烧蚀率分别为1.001μm/s、4.662μm/s和4.450μm/s。试验结果表明,在高温烧蚀过程中,ZrC-SiC/(C/C)复合材料烧蚀中心区陶瓷相逐渐氧化生成ZrO2和SiO2;生成的ZrO2和SiO2混合物保护并填充复合材料烧蚀孔隙,阻止氧化反应向材料内部进行,有效提高了材料的烧蚀性能。 展开更多
关键词 C/C复合材料 反应(rmi) ZrC-SiC/(C/C) 烧蚀性能 烧蚀机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部