Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation ha...Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.展开更多
Owing to the importance of process intensification in the natural gas associated processes, the present contribution aims to investigate the production of an important natural gas downstream product in an improved sys...Owing to the importance of process intensification in the natural gas associated processes, the present contribution aims to investigate the production of an important natural gas downstream product in an improved system.Accordingly, a membrane-assisted reactor for the oxidative dehydrogenation of ethane is presented. The presented system includes a membrane for axial oxygen dosing into the reaction side. Such a strategy would lead to optimum oxygen distribution along the reactor length and prevention of hot spot formation as well. A feasibility study is conducted by developing a validated mathematical model composed of mass and energy balance equations. The effects of various operating variables are investigated by a rigorous sensitivity analysis.Then, by applying the genetic algorithm, a multi-objective optimization procedure is implemented to obtain the optimum operating condition. Considerable increase in the ethane conversion and ethylene yield are the advancements of membrane-assisted oxidative dehydrogenation reactor working under the optimum condition.More than 30% increase in the ethane conversion is obtained. Furthermore, the ethylene yield is enhanced up to 0.45.展开更多
One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is a...One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.展开更多
文摘Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.
文摘Owing to the importance of process intensification in the natural gas associated processes, the present contribution aims to investigate the production of an important natural gas downstream product in an improved system.Accordingly, a membrane-assisted reactor for the oxidative dehydrogenation of ethane is presented. The presented system includes a membrane for axial oxygen dosing into the reaction side. Such a strategy would lead to optimum oxygen distribution along the reactor length and prevention of hot spot formation as well. A feasibility study is conducted by developing a validated mathematical model composed of mass and energy balance equations. The effects of various operating variables are investigated by a rigorous sensitivity analysis.Then, by applying the genetic algorithm, a multi-objective optimization procedure is implemented to obtain the optimum operating condition. Considerable increase in the ethane conversion and ethylene yield are the advancements of membrane-assisted oxidative dehydrogenation reactor working under the optimum condition.More than 30% increase in the ethane conversion is obtained. Furthermore, the ethylene yield is enhanced up to 0.45.
文摘One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.