In this paper, we consider a reaction diffusion system with Hamitonian structure, we first prove the existence of an invariant region for system and the continuity of the semigroup, then establish the absorbing sets ...In this paper, we consider a reaction diffusion system with Hamitonian structure, we first prove the existence of an invariant region for system and the continuity of the semigroup, then establish the absorbing sets and global attractor.展开更多
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incr...This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.展开更多
In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by usi...In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.展开更多
In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations ...In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.展开更多
New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends ...New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.展开更多
This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinv...This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.展开更多
In this paper, the initial boundary value problem of semilinear degenerate reaction-diffusion systems is studied. The regularization method and upper and lower solutions technique are employed to show the existence an...In this paper, the initial boundary value problem of semilinear degenerate reaction-diffusion systems is studied. The regularization method and upper and lower solutions technique are employed to show the existence and continuation of a positive classical solution. The location of quenching points is found. The critical length is estimated by the eigenvalue method.展开更多
We investigate the escape behavior of systems governed by the one-dimensional nonlinear Kramers' equation δW/δt = -vδW/δx + (f'(x)/m)(δW/δv) + γδ(vW)/δv + (γκBT/m)(δ2W^μ/δv^2), where f(...We investigate the escape behavior of systems governed by the one-dimensional nonlinear Kramers' equation δW/δt = -vδW/δx + (f'(x)/m)(δW/δv) + γδ(vW)/δv + (γκBT/m)(δ2W^μ/δv^2), where f(x) is a metastable potential and μ an anomalous exponent. We obtain an expression for the transition state theory escape rate, whose predictions are in good agreement with numerical simulations. The results exhibit the anomalies due to the nonlinearity in W that the TST rate grows with T and drops as μbecomes large at a fixed T. Indeed, particles in the subdiffusive media (μ 〉 1) can escape over the barrier only when T is above a critical value, while there does not exist this confinement in the superdiffusive media (μ 〈 1).展开更多
In this article, we consider a reaction-diffusion differential equation with initial value conditions u(x, 0) =0 on [0, a] and boundary condition ux+αiu= 0 on Γ={0, α}× (0, T), and the quenching happens f...In this article, we consider a reaction-diffusion differential equation with initial value conditions u(x, 0) =0 on [0, a] and boundary condition ux+αiu= 0 on Γ={0, α}× (0, T), and the quenching happens for the reaction-diffusion equation.展开更多
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider ...We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.展开更多
In this paper, blow-up estimates for a class of quasiliuear reaction-diffusion equations(non-Newtonian filtration equations) in term of the nouexistence result for quasilinear ordinary differential equations are estab...In this paper, blow-up estimates for a class of quasiliuear reaction-diffusion equations(non-Newtonian filtration equations) in term of the nouexistence result for quasilinear ordinary differential equations are established to extends the result for semi-linear reaction-diffusion equations(Newtonian filtration equations).展开更多
The paper deals with one important class of reaction-diffusion equations, u' + μ(u - uk) = 0(2 ≤ k ∈ Z+) with boundary value condition u(0) = u(π) = 0. Singularity theory based on the method of L-S (Liapunov-S...The paper deals with one important class of reaction-diffusion equations, u' + μ(u - uk) = 0(2 ≤ k ∈ Z+) with boundary value condition u(0) = u(π) = 0. Singularity theory based on the method of L-S (Liapunov-Schmidt) is applied to its bifurcation analysis. And the satisfactory results are obtained.展开更多
Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes.A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic i...Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes.A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic incompatibility(CI).When releasing Wolbachia infected mosquitoes for population replacement,it is essential to not ignore the spatial inhomogeneity of wild mosquito distribution.In this paper,we develop a model of reaction-diffusion system to investigate the infection dynamics in natural areas,under the assumptions supported by recent experiments such as perfect maternal transmission and complete CI.We prove non-existence of inhomogeneous steady-states when one of the diffusion coefficients is sufficiently large,and classify local stability for constant steady states.It is seen that diffusion does not change the criteria for the local stabilities.Our major concern is to determine the minimum infection frequency above which Wolbachia can spread into the whole population of mosquitoes.We find that diffusion drives the minimum frequency slightly higher in general.However,the minimum remains zero when Wolbachia infection brings overwhelming fitness benefit.In the special case when the infection does not alter the longevity of mosquitoes but reduces the birth rate by half,diffusion has no impact on the minimum frequency.展开更多
We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional ca...We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction- Diffusion equations are provided.展开更多
Based on the computerized symbolic,a new generalized tanh functions method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (PDES)in a unified way.The main idea of o...Based on the computerized symbolic,a new generalized tanh functions method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (PDES)in a unified way.The main idea of our method is to take full advantage of an auxiliary ordinary differential equation which has more new solutions.At the same time,we present a more general transformation,which is a generalized method for finding more types of travelling wave solutions of nonlinear evolution equations(NLEEs).More new exact travelling wave solutions to two nonlinear systems are explicitly obtained.展开更多
In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has a...In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar reaction-diffusion equations with various nonlinearities. In this paper, by using the comparison argument and constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three- dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations in R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the lateral surfaces or a combination of two-dimensional V-form waves on the edges of the pyramid. In particular, our results are applicable to some important models in biology, such as Lotk,u-Volterra competition-diffusion systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.展开更多
In this paper, we design a semi-implicit scheme for the scalar time fractional reaction-diffusion equation. We theoretically prove that the numerical scheme is stable without the restriction on the ratio of the time a...In this paper, we design a semi-implicit scheme for the scalar time fractional reaction-diffusion equation. We theoretically prove that the numerical scheme is stable without the restriction on the ratio of the time and space stepsizes, and numerically show that the convergence orders are 1 in time and 2 in space. As a concrete model, the subdiffusive predator-prey system is discussed in detail. First, we prove that the analytical solution to the system is positive and bounded. Then, we use the provided numerical scheme to solve the subdiffusive predator-prey system, and theoretically prove and numerically verify that the numerical scheme preserves the positivity and boundedness.展开更多
文摘In this paper, we consider a reaction diffusion system with Hamitonian structure, we first prove the existence of an invariant region for system and the continuity of the semigroup, then establish the absorbing sets and global attractor.
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
文摘This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.
文摘In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030 and 10502042the Natural Science Foundation of Shanxi Province under Grant No.2003A03
文摘In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.
基金supported by the National Natural Science Foundation of China under Grant No. 10671156the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.
基金Supported by National Natural Science Foundation of China under Grant No.60641006the National Science Foundation of Shandong Province under Grant No.Y2007A06
文摘This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.
文摘In this paper, the initial boundary value problem of semilinear degenerate reaction-diffusion systems is studied. The regularization method and upper and lower solutions technique are employed to show the existence and continuation of a positive classical solution. The location of quenching points is found. The critical length is estimated by the eigenvalue method.
文摘We investigate the escape behavior of systems governed by the one-dimensional nonlinear Kramers' equation δW/δt = -vδW/δx + (f'(x)/m)(δW/δv) + γδ(vW)/δv + (γκBT/m)(δ2W^μ/δv^2), where f(x) is a metastable potential and μ an anomalous exponent. We obtain an expression for the transition state theory escape rate, whose predictions are in good agreement with numerical simulations. The results exhibit the anomalies due to the nonlinearity in W that the TST rate grows with T and drops as μbecomes large at a fixed T. Indeed, particles in the subdiffusive media (μ 〉 1) can escape over the barrier only when T is above a critical value, while there does not exist this confinement in the superdiffusive media (μ 〈 1).
文摘In this article, we consider a reaction-diffusion differential equation with initial value conditions u(x, 0) =0 on [0, a] and boundary condition ux+αiu= 0 on Γ={0, α}× (0, T), and the quenching happens for the reaction-diffusion equation.
文摘We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.
基金Supported by the National Natural Science Foundation of China(10172011)
文摘In this paper, blow-up estimates for a class of quasiliuear reaction-diffusion equations(non-Newtonian filtration equations) in term of the nouexistence result for quasilinear ordinary differential equations are established to extends the result for semi-linear reaction-diffusion equations(Newtonian filtration equations).
基金Supported by the National Natural Science Foundation (19971057) and by theYouth Science Foundation of Shanghai Municipal Commi
文摘The paper deals with one important class of reaction-diffusion equations, u' + μ(u - uk) = 0(2 ≤ k ∈ Z+) with boundary value condition u(0) = u(π) = 0. Singularity theory based on the method of L-S (Liapunov-Schmidt) is applied to its bifurcation analysis. And the satisfactory results are obtained.
基金supported by National Natural Science Foundation of China(GrantNos.11471085 and 91230104)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1226)+1 种基金Program for Yangcheng Scholars in Guangzhou(Grant No.12A003S)Natural Science Foundation of USA(Grant No.0531898)
文摘Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes.A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic incompatibility(CI).When releasing Wolbachia infected mosquitoes for population replacement,it is essential to not ignore the spatial inhomogeneity of wild mosquito distribution.In this paper,we develop a model of reaction-diffusion system to investigate the infection dynamics in natural areas,under the assumptions supported by recent experiments such as perfect maternal transmission and complete CI.We prove non-existence of inhomogeneous steady-states when one of the diffusion coefficients is sufficiently large,and classify local stability for constant steady states.It is seen that diffusion does not change the criteria for the local stabilities.Our major concern is to determine the minimum infection frequency above which Wolbachia can spread into the whole population of mosquitoes.We find that diffusion drives the minimum frequency slightly higher in general.However,the minimum remains zero when Wolbachia infection brings overwhelming fitness benefit.In the special case when the infection does not alter the longevity of mosquitoes but reduces the birth rate by half,diffusion has no impact on the minimum frequency.
基金Project supported by the Yangtze Scholarship Program
文摘We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction- Diffusion equations are provided.
文摘Based on the computerized symbolic,a new generalized tanh functions method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (PDES)in a unified way.The main idea of our method is to take full advantage of an auxiliary ordinary differential equation which has more new solutions.At the same time,we present a more general transformation,which is a generalized method for finding more types of travelling wave solutions of nonlinear evolution equations(NLEEs).More new exact travelling wave solutions to two nonlinear systems are explicitly obtained.
基金supported by National Natural Science Foundation of China (Grant Nos. 11371179 and 11271172)National Science Foundation of USA (Grant No. DMS-1412454)
文摘In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar reaction-diffusion equations with various nonlinearities. In this paper, by using the comparison argument and constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three- dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations in R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the lateral surfaces or a combination of two-dimensional V-form waves on the edges of the pyramid. In particular, our results are applicable to some important models in biology, such as Lotk,u-Volterra competition-diffusion systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.
基金supported by New Century Excellent Talents in University(Grant No.NCET-09-0438)National Natural Science Foundation of China(Grant Nos.10801067 and 11271173)the Fundamental Research Funds for the Central Universities(Grant Nos.lzujbky-2010-63 and lzujbky-2012-k26)
文摘In this paper, we design a semi-implicit scheme for the scalar time fractional reaction-diffusion equation. We theoretically prove that the numerical scheme is stable without the restriction on the ratio of the time and space stepsizes, and numerically show that the convergence orders are 1 in time and 2 in space. As a concrete model, the subdiffusive predator-prey system is discussed in detail. First, we prove that the analytical solution to the system is positive and bounded. Then, we use the provided numerical scheme to solve the subdiffusive predator-prey system, and theoretically prove and numerically verify that the numerical scheme preserves the positivity and boundedness.