期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Chandrasekhar方程之拉氏形式、Neother流及其反散射方程
1
作者 王均义 葛墨林 《南京大学学报(自然科学版)》 CAS CSCD 1989年第4期711-715,共5页
文中给出了Chandrasckhar方程的拉氏形式,由此导出了三种类型的Neother守恒流并将此方程化为手征形式,进而给出其反散射方程。
关键词 拉氏形式 Neother流 反散射方程
下载PDF
Zakharov-Shabat反散射方程的不可约形式
2
作者 肖奕 陈宗蕴 黄念宁 《应用数学》 CSCD 北大核心 1989年第1期73-78,共6页
对求孤子解的Z-S反散射方程组,给出了它的等价的不可约形式。在求N-孤子解时,Z-S方程组由2N个线性代数方程组成,求解手续就是计算一个2N×2N矩阵之逆。而本文所得的它的不可约形式,是由N个线性代数方程组成的,求解只需计算一个N... 对求孤子解的Z-S反散射方程组,给出了它的等价的不可约形式。在求N-孤子解时,Z-S方程组由2N个线性代数方程组成,求解手续就是计算一个2N×2N矩阵之逆。而本文所得的它的不可约形式,是由N个线性代数方程组成的,求解只需计算一个N×N矩阵之逆,从而使计算量大大缩小。文未给出求两孤子解和呼吸子解的实际的简单计算和结果。 展开更多
关键词 反散射方程 不可约形式 孤子解
下载PDF
An Alternative Method to Study Wave Scattering by Semi-infinite Inertial Surfaces
3
作者 R.Gayen Ranita Roy 《Journal of Marine Science and Application》 2013年第1期31-37,共7页
A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The disconti... A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results. 展开更多
关键词 Fredholm integral equations inertial surface reflection coefficient water wave scattering boundary value problem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部