A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the bac...A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.展开更多
Based on the EOF analyses of Absolute Dynamic Topography satellite data, it is found that, in summer, the northern South China Sea (SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter. A con...Based on the EOF analyses of Absolute Dynamic Topography satellite data, it is found that, in summer, the northern South China Sea (SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter. A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS. Numerical experi- ments show that the nonlinear term, the pressure torque and the planetary vorticity adveetion play important roles in the circulation of the northern SCS, whilst the contribution by seasonal wind stress curl is local and limited. Only a small part of the Kuroshio water intrudes into the SCS, it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait (LS) and a negative vorticity band along the 200 m isobath of the northern basin. The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS. Besides the Kuroshio intrusion and monsoon, the water trans- ports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS, and the induced vorticity field in summer is almost contrary to that in winter. The strength variations of these three key factors (Kuroshio, monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS. As for the water exchange via the LS, the Kuroshio intrusion brings about a net inflow into the SCS, and the monsoon has a less effect, whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors, thus, the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.展开更多
The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southem Philippine Sea, and it is believed closely associated with the continuous northward...The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southem Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950-2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8-27.3 ao, the ACG covers a large area from the Mindanao coast to 131 ~E and from 3~N to 10~N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at -6~N, while the northern ACG (NACG) is centered at -10~N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4-8 years, while the NACG has enhanced power within the 3-5-year band. A lead-lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the E1 Nifio-Southern Oscillation. Possible causes for the ACG variability are discussed.展开更多
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean...Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from the inertial track in an intensified cyclonic curvature, and then turns northward to- ward the warm pool in the northern BOB. It therefore converges with the easterly flow on the south side of the anticyclone over the northern BOB, forming a cyclonic circulation center east of Sri Lanka. Co-located with the cyclonic circulation is a generation of atmospheric potential energy, due to lower tropospheric heating by the warm ocean. Eventually the BOB mon- soon onset vortex (MOV) is generated east of Sri Lanka. As the MOV migrates northward to the warm pool it develops quickly such that the zonal oriented subtropical high is split over the eastern BOB. Thus, the tropical southwesterly on the southern and eastern sides of the MOV merges into the subtropical westerly in the north, leading to active convection over the eastern BOB and western Indochina Peninsula and onset of the Asian summer monsoon.展开更多
基金supported by the Ministry of Science and Technology of China(National Basic Research Program of China(Grant No.2012CB955602))the National Key Program for Developing Basic Science(Grant No.2010CB428904)the Natural Science Foundation of China(Grant Nos.40830106,40921004,41176006)
文摘A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.
基金supported by theNational Natural Foundation of China (NSFC) Grants Nos. 41025019,40976009 and 41206009
文摘Based on the EOF analyses of Absolute Dynamic Topography satellite data, it is found that, in summer, the northern South China Sea (SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter. A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS. Numerical experi- ments show that the nonlinear term, the pressure torque and the planetary vorticity adveetion play important roles in the circulation of the northern SCS, whilst the contribution by seasonal wind stress curl is local and limited. Only a small part of the Kuroshio water intrudes into the SCS, it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait (LS) and a negative vorticity band along the 200 m isobath of the northern basin. The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS. Besides the Kuroshio intrusion and monsoon, the water trans- ports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS, and the induced vorticity field in summer is almost contrary to that in winter. The strength variations of these three key factors (Kuroshio, monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS. As for the water exchange via the LS, the Kuroshio intrusion brings about a net inflow into the SCS, and the monsoon has a less effect, whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors, thus, the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417401)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11010204)+4 种基金the Pioneer Hundred Talent Program of Chinese Academy of Sciences(No.Y62114101Q)the National Natural Science Foundation of China(NSFC)(Nos.40890152,41330963)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the Global Change and Air-Sea Interaction(No.GASI-03-01-01-05)the NSFC Innovative Group Grant(No.41421005)
文摘The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southem Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950-2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8-27.3 ao, the ACG covers a large area from the Mindanao coast to 131 ~E and from 3~N to 10~N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at -6~N, while the northern ACG (NACG) is centered at -10~N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4-8 years, while the NACG has enhanced power within the 3-5-year band. A lead-lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the E1 Nifio-Southern Oscillation. Possible causes for the ACG variability are discussed.
基金supported jointly by National Basic Research Program of China (Grant No. 2006CB403600)the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)National Natural Science Foundation of China (Grant Nos. 40875034, 40925015, 40821092, 40975052, and 40810059005)
文摘Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from the inertial track in an intensified cyclonic curvature, and then turns northward to- ward the warm pool in the northern BOB. It therefore converges with the easterly flow on the south side of the anticyclone over the northern BOB, forming a cyclonic circulation center east of Sri Lanka. Co-located with the cyclonic circulation is a generation of atmospheric potential energy, due to lower tropospheric heating by the warm ocean. Eventually the BOB mon- soon onset vortex (MOV) is generated east of Sri Lanka. As the MOV migrates northward to the warm pool it develops quickly such that the zonal oriented subtropical high is split over the eastern BOB. Thus, the tropical southwesterly on the southern and eastern sides of the MOV merges into the subtropical westerly in the north, leading to active convection over the eastern BOB and western Indochina Peninsula and onset of the Asian summer monsoon.