Crosslinking treatments for a commercially available aromatic polyamide reverse osmosis membrane were carried out to improve its chlorine resistance.The crosslinking agents including 1,6-hexanediol diglycidyl ether,ad...Crosslinking treatments for a commercially available aromatic polyamide reverse osmosis membrane were carried out to improve its chlorine resistance.The crosslinking agents including 1,6-hexanediol diglycidyl ether,adipoyl dichloride and hexamethylene diisocyanate ester with long flexible aliphatic chains and high reactivity with N-H groups were used in the experiments.Attenuated total reflective Fourier transform infrared spectra verified the successful preparation of highly crosslinked membranes by crosslinking treatments.It was suggested that the crosslinking agents were connected to membrane surface through the reactions with amine and amide Ⅱ groups,which is confirmed by surface charge measurements.Based on contact angle measurements,crosslinking treatments decreased membrane hydrophilicity by introducing methylene groups to membrane surface.With increasing amount of crosslinking agent molecules connected to membrane surface,the hydrolysis of unconnected functional groups of crosslinking agent produced polar groups and increased membrane hydrophilicity.The highly crosslinked membranes showed higher salt rejections and lower water fluxes as compared with the raw membrane.Since the active sites(N-H groups) vulnerable to free chlorine on membrane surface were eliminated by crosslinking treatments,the chlorine resistances of the highly crosslinked membranes were significantly improved by slighter changes in both water fluxes and salt rejections after chlorination.展开更多
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method...To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.展开更多
The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me...The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.展开更多
Based on the characters of deep well water quality in Fenxi Mining Group in Liulin, the feasibilities of two treatment technologies which use electrodialysis and reverse osmosis are analyzed. Through analyzing and com...Based on the characters of deep well water quality in Fenxi Mining Group in Liulin, the feasibilities of two treatment technologies which use electrodialysis and reverse osmosis are analyzed. Through analyzing and comparing, reverse osmosis technology has several advantages, such as good treatment effect, convenient operating management and low run cost.展开更多
Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane system...Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.展开更多
基金Supported by the National Natural Science Foundation of China (20676095)the Program of Introducing Talents of Discipline to Universities (B06006)
文摘Crosslinking treatments for a commercially available aromatic polyamide reverse osmosis membrane were carried out to improve its chlorine resistance.The crosslinking agents including 1,6-hexanediol diglycidyl ether,adipoyl dichloride and hexamethylene diisocyanate ester with long flexible aliphatic chains and high reactivity with N-H groups were used in the experiments.Attenuated total reflective Fourier transform infrared spectra verified the successful preparation of highly crosslinked membranes by crosslinking treatments.It was suggested that the crosslinking agents were connected to membrane surface through the reactions with amine and amide Ⅱ groups,which is confirmed by surface charge measurements.Based on contact angle measurements,crosslinking treatments decreased membrane hydrophilicity by introducing methylene groups to membrane surface.With increasing amount of crosslinking agent molecules connected to membrane surface,the hydrolysis of unconnected functional groups of crosslinking agent produced polar groups and increased membrane hydrophilicity.The highly crosslinked membranes showed higher salt rejections and lower water fluxes as compared with the raw membrane.Since the active sites(N-H groups) vulnerable to free chlorine on membrane surface were eliminated by crosslinking treatments,the chlorine resistances of the highly crosslinked membranes were significantly improved by slighter changes in both water fluxes and salt rejections after chlorination.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the CAS Key Laboratory of Carbon Materials,China(No.KLCMKFJJ2005)the Fund of Aerospace Research Institute of Material and Processing Technology,China(No.6142906200108).
文摘To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.
文摘The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.
文摘Based on the characters of deep well water quality in Fenxi Mining Group in Liulin, the feasibilities of two treatment technologies which use electrodialysis and reverse osmosis are analyzed. Through analyzing and comparing, reverse osmosis technology has several advantages, such as good treatment effect, convenient operating management and low run cost.
基金Supported by the National High Technology Research and Development of China (2007AA030303)
文摘Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.