Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Galli...The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.展开更多
Pt/Ti bottom electrodes were fabricated on SiO2/Si substrates by magnetron dual-facingtarget sputtering system. Lead zirconate titanate(PZT) thin films were deposited on Pt/Ti/SiO2/Si substrates by radio frequency ...Pt/Ti bottom electrodes were fabricated on SiO2/Si substrates by magnetron dual-facingtarget sputtering system. Lead zirconate titanate(PZT) thin films were deposited on Pt/Ti/SiO2/Si substrates by radio frequency (RF) magnetron sputtering system. The thickness of PZT thin films which were deposited for 5 h was about 800 nm. XRD spectra show that PZT thin films deposited in Ar ambience and rapid-thermal-annealed for 20 min at 700 ℃ have good crystallization behavior and perovskite structure. AFM micrographs show that mean diameter of crystallites is 70 nm and surface structures of PZT thin films are uniform and dense. Raw mean, root mean square roughness and mean roughness of PZT thin films are 34..357 rim, 2. 479 nm and 1. 954 nm respectively. As test frequency is 1 kHz, dielectric constant of PZT thin films is 327.5. Electric hysteresis loop shows that coercive field strength, residual polarization strength and spontaneous polarization strength of PZT thin films are 50 kV/cm, 10μC/cm^2 and 13μC/cm^2 respectively.展开更多
Na-doped p-type ZnO thin films have been realized by DC reactive magnetron sputtering with a set of metal-Zn targets doped with various Na contents and under different substrate temperatures, respectively. Hall effect...Na-doped p-type ZnO thin films have been realized by DC reactive magnetron sputtering with a set of metal-Zn targets doped with various Na contents and under different substrate temperatures, respectively. Hall effect measurement, field-emission SEM, X-ray diffraction and optical transmission were carried out to investigate the effects of Na content and substrate temperature on the properties of p-type films. Results indicate that all the Na-doped ZnO films are strongly (002) oriented, and have an average transmittance -85 % in the visible region. Na-doped p-type ZnO films with good structural, electrical, and optical properties can only be obtained at an intermediate amount of Na content and under appropriate substrate temperature. At the optimal condition, the Na-doped p-type ZnO has the lowest resistivity of 13. 8 Ω· cm with the carrier concentration as high as 1.07 × 10^18 em^-3. The stability of the Na-doped p-type ZnO is also studied in this paper and it is found that the electrical properties keep stable in a period of one month.展开更多
We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic be...We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AIO(X^2∑+, v=0, N and N+I4) products can be imaged via P(N) and R(N+14) branches of the Av=l band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AIO(D2E+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AiO(v=0, N=IS) and AIO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm^-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].展开更多
Polycrystalline ZnO films were prepared on glass wafer using Zn targets by radio frequency(RF)reactive sputtering technique under different deposition conditions.X-ray diffraction (XRD) and optical transmittance spect...Polycrystalline ZnO films were prepared on glass wafer using Zn targets by radio frequency(RF)reactive sputtering technique under different deposition conditions.X-ray diffraction (XRD) and optical transmittance spectrum were employed to analyze the structure and optical character of the films.The strain and stress in films, as well as the packing density are calculated in terms of refractive index of films measured with an elliptic polarization analyzer.It is the deposition conditions that have great effects on the structural and optical properties of ZnO films.Under the optimal conditions,the only evident peak in XRD spectrum was (002) peak with the full width at half maximum (FWHM) of 0.20° showing the grain size of 42.8 nm.The packing density,the stress in (002) plane and the average optical transmittance in the visible region were about 97%,-1.06×10~9 N/m^2 and 92%, respectively.展开更多
There is a gr eat interest in obtaining epitaxial α″ nitride phase of iron because of their special ferromagnetic properties. α″ Fe 16 N 2 thin films have been prep ared by facing target sputtering (FTS) onto NaCl...There is a gr eat interest in obtaining epitaxial α″ nitride phase of iron because of their special ferromagnetic properties. α″ Fe 16 N 2 thin films have been prep ared by facing target sputtering (FTS) onto NaCl (001) substrates in a mixture of argon(Ar) and N 2 gases. The base pressure was 6×10 -5 Pa. During sput tering, the partial pressures of Ar and N 2 gases were kept constant at 0.3 Pa and 0.05 Pa respectively. The deposition rate was about 0.2 nm/s. The substrate temperature was held at about 100 ℃. Annealing of the films was sequentially ca rried out at 150 ℃ for 1 h in vacuum ( at least 10 -4 Pa ) to obtain α″ phase. Transmission electron microscope (TEM) observations and X ray diffract ion (XRD) patterns showed that the α″ Fe 16 N 2 epitaxially grew on the NaCl substrates. It was found that the arrangement of the SAD patterns exhibits perfect symmetries.By using super lattice reflections, the lattice constants a=b=(5.71±0.02)×10 -1 nm and c=(6.30±0.04) ×10 -1 nm of the α″ phase with a body centered tetragonal (BCT) structu re were determined, which was very close to the results obtained by Jack (a=b= 5.72×10 -1 nm, c= 6.29×10 -1 nm). The X ray diffraction patterns and the selected area diffraction patterns showed t hat α″ Fe 16 N 2 epitaxially grew on the NaCl (001) substrate with orien tation relationships α″ Fe 16 N 2 (001) ‖NaCl (001),α″ Fe 16 N 2 ‖NaCl .展开更多
Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing...Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.展开更多
To research the influence of oxygen flow rate on the structural and optical properties of TiO2 thin film,TiO2 films on glass were deposited by reactive magnetron sputtering.The microstructure and optical properties we...To research the influence of oxygen flow rate on the structural and optical properties of TiO2 thin film,TiO2 films on glass were deposited by reactive magnetron sputtering.The microstructure and optical properties were measured by X-ray diffractometry,AFM and UV-VIS transmittance spectroscopy,respectively.The results show that the films deposited at oxygen flow rate of 10 mL/min has the lowest roughness and the highest transmittance.The absorption angle shifts to longer wavelengths as oxygen flow rates increase from 5 to 10 mL/min,then to shorter ones as the oxygen flow rate increase from 10 to 30 mL/min.The band gap is 3.38 eV,which is nearly constant in the experiment.For the TiO2 thin films deposited at 10 mL/min of oxyge flow rate,there are nano-crystalline structures,which are suitable for anti-reflection(AR) coating in the solar cells structure system.展开更多
The reaction dynamics of yttrium atoms with sulfur dioxide molecules at a high collision energy of 36 kcal/mol was studied using time-sliced velocity map ion imaging,crossed molecular beam and laser-ablation method.Th...The reaction dynamics of yttrium atoms with sulfur dioxide molecules at a high collision energy of 36 kcal/mol was studied using time-sliced velocity map ion imaging,crossed molecular beam and laser-ablation method.The product YO was detected via multiphoton ionization at various wavelengths in the region of 482-615 nm.The slice images of YO show a broad velocity distribution and forward-backward peaking angular distribution.The forward scattering signal is stronger than its backward distribution.This indicates that the reaction proceeds via an intermediate complex and the lifetime of the intermediate state is less than one rotational period.The formation of complex suggests that electron transfer occurs in the oxidation reaction.展开更多
One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can h...One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can help test the validi ty of modern chemical t heories and provide met hods to cont rol chemical reactions.The subject of this review is to describe the recent experimental techniques used to study the reaction dynamics of metal atoms in the gas phase.Through these techniques,information such as the internal energy distribution and angular distribution of the nascent products or the three-dimensional stereodynamic reactivity can be obtained.In addition,by preparing metal at oms wi th specific exci ted elec tronic states or orbi tal arrangemen ts,information about the reactivity of the electronic states enriches the relevant understanding of the electron transfer mechanism in metal reaction dynamics.展开更多
The ZAO (ZnO:Al) thin films were prepared by DC reactive magnetron sputtering technique. The relationship between the process parameters and the organizational structure,optical and electrical properties was studied. ...The ZAO (ZnO:Al) thin films were prepared by DC reactive magnetron sputtering technique. The relationship between the process parameters and the organizational structure,optical and electrical properties was studied. Through optimizing the process parameters,an optimal preparation parameter can be obtained. Using the optimal parameters to prepare the ZAO thin films,the resistivity of the ZAO film is as low as 4.5×10-4 Ω·cm and the average transmissivity in the visible region is around 80%,the optical and electrical properties meet the application requirements.展开更多
Molybdenum films were deposited on Corning 7059 glass substrates by DC magnetron sputtering with different working gas pressures and sputtering powers.The structure and morphology,residual stress and adhesion,resistiv...Molybdenum films were deposited on Corning 7059 glass substrates by DC magnetron sputtering with different working gas pressures and sputtering powers.The structure and morphology,residual stress and adhesion,resistivity and optical reflectance of the as-deposited Mo films were investigated.The results show that Mo films deposited with high working gas pressure and low sputtering power have a spherical surface morphology,small grain size,residual compressive stress and a good adhesion,high resistivity and low optical reflectance.With the working gas pressure decreased and the sputtering power increased,Mo films have elongated spindle-shape or diamond flake shape surface morphology,the grain size is increased,with residual stress changed from tensile to compressive,a poor adhesion,resistivity decreased and optical reflectance increased.展开更多
Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of B...Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of Berg's hysteresis model, the improved sputtering system is realized without a hysteresis effect. A new control method for rapidly depositing highly c-axis oriented AlN thin films is proposed. The N2 concentration could be controlled by observing the changes in cathode voltage, to realize the optimum processing condition where the target could be fixed stably in the transition region, and both stoichiometric film composition and a high deposition rate could be obtained. Under a 500 W RF power of a target with a 6 cm diameter, a substrate temperature of 450 ℃, a target-substrate distance of 60 mm and a N2 concentration of 25%, AlN thin film with preferential (002) orientation was deposited at 2.3 μm/h which is a much higher rate than previously achieved. Through X-ray diffraction (XRD) analysis, the full width at half maximum (FWHM) of AlN (002) was shown to be about 0.28°, which shows the good crystallinity and crystal orientation of AlN thin film. With other parameters held constant, any increase or decrease in N2 concentration results in an increase in the FWHM of AlN.展开更多
Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar - 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced ...Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar - 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.展开更多
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
文摘The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.
文摘Pt/Ti bottom electrodes were fabricated on SiO2/Si substrates by magnetron dual-facingtarget sputtering system. Lead zirconate titanate(PZT) thin films were deposited on Pt/Ti/SiO2/Si substrates by radio frequency (RF) magnetron sputtering system. The thickness of PZT thin films which were deposited for 5 h was about 800 nm. XRD spectra show that PZT thin films deposited in Ar ambience and rapid-thermal-annealed for 20 min at 700 ℃ have good crystallization behavior and perovskite structure. AFM micrographs show that mean diameter of crystallites is 70 nm and surface structures of PZT thin films are uniform and dense. Raw mean, root mean square roughness and mean roughness of PZT thin films are 34..357 rim, 2. 479 nm and 1. 954 nm respectively. As test frequency is 1 kHz, dielectric constant of PZT thin films is 327.5. Electric hysteresis loop shows that coercive field strength, residual polarization strength and spontaneous polarization strength of PZT thin films are 50 kV/cm, 10μC/cm^2 and 13μC/cm^2 respectively.
基金Natural Science Foundation (60576063)Science and Technology Project of Zhejiang province(2008F70015)
文摘Na-doped p-type ZnO thin films have been realized by DC reactive magnetron sputtering with a set of metal-Zn targets doped with various Na contents and under different substrate temperatures, respectively. Hall effect measurement, field-emission SEM, X-ray diffraction and optical transmission were carried out to investigate the effects of Na content and substrate temperature on the properties of p-type films. Results indicate that all the Na-doped ZnO films are strongly (002) oriented, and have an average transmittance -85 % in the visible region. Na-doped p-type ZnO films with good structural, electrical, and optical properties can only be obtained at an intermediate amount of Na content and under appropriate substrate temperature. At the optimal condition, the Na-doped p-type ZnO has the lowest resistivity of 13. 8 Ω· cm with the carrier concentration as high as 1.07 × 10^18 em^-3. The stability of the Na-doped p-type ZnO is also studied in this paper and it is found that the electrical properties keep stable in a period of one month.
基金We are indebted to Prof. Kopin Liu (IAMS, Taipei) for stimulating discussions on going experiments, to Prof. Ming-fei Zhou and Assoc. Prof. Guan-jun Wang (Fudan University, Shanghai) for assistance in building machine, to Prof. Uzi. Even (Tel Aviv University, Tel Aviv) for discussions oil E1 valve employnmnt in laser ablation, and to Prof. Xue-ming Yang's group (DICP, Dalian) for new Iaser system. This work was supported by the National Natural Science Foundation of China (No.21322309) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.
文摘We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AIO(X^2∑+, v=0, N and N+I4) products can be imaged via P(N) and R(N+14) branches of the Av=l band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AIO(D2E+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AiO(v=0, N=IS) and AIO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm^-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].
文摘Polycrystalline ZnO films were prepared on glass wafer using Zn targets by radio frequency(RF)reactive sputtering technique under different deposition conditions.X-ray diffraction (XRD) and optical transmittance spectrum were employed to analyze the structure and optical character of the films.The strain and stress in films, as well as the packing density are calculated in terms of refractive index of films measured with an elliptic polarization analyzer.It is the deposition conditions that have great effects on the structural and optical properties of ZnO films.Under the optimal conditions,the only evident peak in XRD spectrum was (002) peak with the full width at half maximum (FWHM) of 0.20° showing the grain size of 42.8 nm.The packing density,the stress in (002) plane and the average optical transmittance in the visible region were about 97%,-1.06×10~9 N/m^2 and 92%, respectively.
文摘There is a gr eat interest in obtaining epitaxial α″ nitride phase of iron because of their special ferromagnetic properties. α″ Fe 16 N 2 thin films have been prep ared by facing target sputtering (FTS) onto NaCl (001) substrates in a mixture of argon(Ar) and N 2 gases. The base pressure was 6×10 -5 Pa. During sput tering, the partial pressures of Ar and N 2 gases were kept constant at 0.3 Pa and 0.05 Pa respectively. The deposition rate was about 0.2 nm/s. The substrate temperature was held at about 100 ℃. Annealing of the films was sequentially ca rried out at 150 ℃ for 1 h in vacuum ( at least 10 -4 Pa ) to obtain α″ phase. Transmission electron microscope (TEM) observations and X ray diffract ion (XRD) patterns showed that the α″ Fe 16 N 2 epitaxially grew on the NaCl substrates. It was found that the arrangement of the SAD patterns exhibits perfect symmetries.By using super lattice reflections, the lattice constants a=b=(5.71±0.02)×10 -1 nm and c=(6.30±0.04) ×10 -1 nm of the α″ phase with a body centered tetragonal (BCT) structu re were determined, which was very close to the results obtained by Jack (a=b= 5.72×10 -1 nm, c= 6.29×10 -1 nm). The X ray diffraction patterns and the selected area diffraction patterns showed t hat α″ Fe 16 N 2 epitaxially grew on the NaCl (001) substrate with orien tation relationships α″ Fe 16 N 2 (001) ‖NaCl (001),α″ Fe 16 N 2 ‖NaCl .
基金Natural Science Foundation of Tianjin(No.043100811)the Key Program of Natural Science Foundation of Tianjin(No.08JCZDJC17500)
文摘Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.
基金Project(08FJ1002) supported by the Hunan Province Key Project of Science and Technology,China
文摘To research the influence of oxygen flow rate on the structural and optical properties of TiO2 thin film,TiO2 films on glass were deposited by reactive magnetron sputtering.The microstructure and optical properties were measured by X-ray diffractometry,AFM and UV-VIS transmittance spectroscopy,respectively.The results show that the films deposited at oxygen flow rate of 10 mL/min has the lowest roughness and the highest transmittance.The absorption angle shifts to longer wavelengths as oxygen flow rates increase from 5 to 10 mL/min,then to shorter ones as the oxygen flow rate increase from 10 to 30 mL/min.The band gap is 3.38 eV,which is nearly constant in the experiment.For the TiO2 thin films deposited at 10 mL/min of oxyge flow rate,there are nano-crystalline structures,which are suitable for anti-reflection(AR) coating in the solar cells structure system.
基金supported by the National Natural Science Foundation of China (No.21673047,No.21327901and No.21573047)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning.
文摘The reaction dynamics of yttrium atoms with sulfur dioxide molecules at a high collision energy of 36 kcal/mol was studied using time-sliced velocity map ion imaging,crossed molecular beam and laser-ablation method.The product YO was detected via multiphoton ionization at various wavelengths in the region of 482-615 nm.The slice images of YO show a broad velocity distribution and forward-backward peaking angular distribution.The forward scattering signal is stronger than its backward distribution.This indicates that the reaction proceeds via an intermediate complex and the lifetime of the intermediate state is less than one rotational period.The formation of complex suggests that electron transfer occurs in the oxidation reaction.
基金The work was supported by the National Natural Science Foundation of China(No.21673047 and No.22073019)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can help test the validi ty of modern chemical t heories and provide met hods to cont rol chemical reactions.The subject of this review is to describe the recent experimental techniques used to study the reaction dynamics of metal atoms in the gas phase.Through these techniques,information such as the internal energy distribution and angular distribution of the nascent products or the three-dimensional stereodynamic reactivity can be obtained.In addition,by preparing metal at oms wi th specific exci ted elec tronic states or orbi tal arrangemen ts,information about the reactivity of the electronic states enriches the relevant understanding of the electron transfer mechanism in metal reaction dynamics.
文摘The ZAO (ZnO:Al) thin films were prepared by DC reactive magnetron sputtering technique. The relationship between the process parameters and the organizational structure,optical and electrical properties was studied. Through optimizing the process parameters,an optimal preparation parameter can be obtained. Using the optimal parameters to prepare the ZAO thin films,the resistivity of the ZAO film is as low as 4.5×10-4 Ω·cm and the average transmissivity in the visible region is around 80%,the optical and electrical properties meet the application requirements.
基金supported by the knowledge innovation program of the Chinese academy of sciences(Grant No.KGCX2-YW-347)
文摘Molybdenum films were deposited on Corning 7059 glass substrates by DC magnetron sputtering with different working gas pressures and sputtering powers.The structure and morphology,residual stress and adhesion,resistivity and optical reflectance of the as-deposited Mo films were investigated.The results show that Mo films deposited with high working gas pressure and low sputtering power have a spherical surface morphology,small grain size,residual compressive stress and a good adhesion,high resistivity and low optical reflectance.With the working gas pressure decreased and the sputtering power increased,Mo films have elongated spindle-shape or diamond flake shape surface morphology,the grain size is increased,with residual stress changed from tensile to compressive,a poor adhesion,resistivity decreased and optical reflectance increased.
文摘Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of Berg's hysteresis model, the improved sputtering system is realized without a hysteresis effect. A new control method for rapidly depositing highly c-axis oriented AlN thin films is proposed. The N2 concentration could be controlled by observing the changes in cathode voltage, to realize the optimum processing condition where the target could be fixed stably in the transition region, and both stoichiometric film composition and a high deposition rate could be obtained. Under a 500 W RF power of a target with a 6 cm diameter, a substrate temperature of 450 ℃, a target-substrate distance of 60 mm and a N2 concentration of 25%, AlN thin film with preferential (002) orientation was deposited at 2.3 μm/h which is a much higher rate than previously achieved. Through X-ray diffraction (XRD) analysis, the full width at half maximum (FWHM) of AlN (002) was shown to be about 0.28°, which shows the good crystallinity and crystal orientation of AlN thin film. With other parameters held constant, any increase or decrease in N2 concentration results in an increase in the FWHM of AlN.
文摘Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar - 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.