In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on ...In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.展开更多
3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical...3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical data based on the quasi-analytical approximation (QA) and re-weighted regularized conjugate gradient method (RRCG) algorithms using Visual Fortran 6.5. Application of the QA approximation to forward modeling and Frechet derivative computations speeds up the calculation dramatically. The trial calculation for synthetic data of theoretical model showed that the program is fast and highly precise.展开更多
Geophysical inversion under different stabilizers has different descriptions of the target body boundary,especially in complex geological structures.In this paper,we present an extremum boundary inversion algorithm ba...Geophysical inversion under different stabilizers has different descriptions of the target body boundary,especially in complex geological structures.In this paper,we present an extremum boundary inversion algorithm based on different stabilizers for electrical interface recognition.Firstly,we use the smoothest and minimum-support stabilizing functional to study the applicability of adaptive regularization inversion algorithm.Then,an electrical interface recognition method based on different stabilizers is developed by introducing extremum boundary inversion algorithm.The testing shows that the adaptive regularization inversion method does work for different stabilizers and has a low dependence on the initial models.The ratio of the smooth and focusing upper and lower boundaries obtained using the extremum boundary inversion algorithm can clearly demarcate electrical interfaces.We apply the inversion algorithm to the magnetotelluric(MT)data collected from a preselected area of a high-level-waste clay-rock repository site in the Tamusu area.We recognized regional structures with smooth inversion and the local details with focusing inversion and determined the thickness of the target layer combined with the geological and drilling information,which meets the requirement for the site of the high-level waste clay-rock repository.展开更多
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
基金supported by the Project kzcx2-yw-113,kzcx2-yw-121 and kzcx1-yw-15-4,CAS
文摘In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.
文摘3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical data based on the quasi-analytical approximation (QA) and re-weighted regularized conjugate gradient method (RRCG) algorithms using Visual Fortran 6.5. Application of the QA approximation to forward modeling and Frechet derivative computations speeds up the calculation dramatically. The trial calculation for synthetic data of theoretical model showed that the program is fast and highly precise.
基金supported by the National Natural Science Foundation of China(Nos.41604104,41674077 and 41404057)PRC High-level Radioactive Waste Geological Disposal Project([2014] No.1578)+2 种基金Open Fund of State Key Laboratory of Marine Geology(Tongji University)(MGK1704)Jiangxi Province Youth Science Fund(No.20171BAB213031)Scientific Research Starting Foundation for Doctors of East China University of Technology(DHBK201403)
文摘Geophysical inversion under different stabilizers has different descriptions of the target body boundary,especially in complex geological structures.In this paper,we present an extremum boundary inversion algorithm based on different stabilizers for electrical interface recognition.Firstly,we use the smoothest and minimum-support stabilizing functional to study the applicability of adaptive regularization inversion algorithm.Then,an electrical interface recognition method based on different stabilizers is developed by introducing extremum boundary inversion algorithm.The testing shows that the adaptive regularization inversion method does work for different stabilizers and has a low dependence on the initial models.The ratio of the smooth and focusing upper and lower boundaries obtained using the extremum boundary inversion algorithm can clearly demarcate electrical interfaces.We apply the inversion algorithm to the magnetotelluric(MT)data collected from a preselected area of a high-level-waste clay-rock repository site in the Tamusu area.We recognized regional structures with smooth inversion and the local details with focusing inversion and determined the thickness of the target layer combined with the geological and drilling information,which meets the requirement for the site of the high-level waste clay-rock repository.
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.