In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Base...In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.展开更多
Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potential...Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potentials from 0.6 V to 1.0 V (vs. RHE) with the exchange current density of ca. 50 mA/cm^2 at 0.8 V, the fast kinetics of OHad desorption indicates that it should not be the rate determining step for ORR. In the kineticor kinetic-mass transport mix controlled potential region, ORR current at constant potential displays slight decrease with reaction time. ORR current in the positive-going potential scan is slightly larger than that in the subsequent negative-going scan with electrode rotation speed (〉800 r/min) and slow potential scan rate (〈100 mV/s). The open circuit potential of Pt/0.1 mol/L HClO4 interface increases promptly from 0.9 V to 1.0 V after switch from O2 free- to O2-saturated solution. The increase of open circuit potential as well as ORR current decays under potential control due to the accumulation of OHad from dissociative adsorption of O2. It indicates that at Pt(111) the net rate for O2 decomposition to OHad is slightly faster than that for OHad removal, one cannot simply use the assumption of rate determining step to discuss ORR kinetics. Instead, the ORR kinetics is determined by both the kinetics for O2 decomposition to OHad as well as the thermo-equilibrium of OHad+H^++e→←H2O.展开更多
Based on a modified Lorenz system, a relatively simple four-dimensional continuous autonomous hyperchaotic system is proposed by introducing a state feedback controller. The system consists of four coupled first-order...Based on a modified Lorenz system, a relatively simple four-dimensional continuous autonomous hyperchaotic system is proposed by introducing a state feedback controller. The system consists of four coupled first-order ordinary differential equations with three nonlinear cross-product terms. Some dynamical properties of this hyperchaotic system, including equlibria, stability, Lyapunov exponent spectrum and bifurcation, are analysed in detail. Moreover, an electronic circuit diagram is designed for demonstrating the existence of the hyperchaos, and verifying computer simulation results.展开更多
Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and c...Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-deterrnining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are -0.118 V and -0.039 4 V, respectively, consisting with the experimental values, Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.展开更多
Purpose: The purpose of this study was to examine the effects of landing kinematics and electromyographic (EMG) activities of medial gastrocnemius on a combined inversion and plantarflexion surface on the ankle (M...Purpose: The purpose of this study was to examine the effects of landing kinematics and electromyographic (EMG) activities of medial gastrocnemius on a combined inversion and plantarflexion surface on the ankle (MG), peroneus longus (PL), and tibialis anterior (TA) muscles. Methods: Twelve recreational athletes performed five drop landings from an overhead bar of 30 cm height on to three surfaces: a flat surface, a 25° inversion surface, and a combined surface of 25° inversion and 25° plantarflexion. The kinematic variables and integrated EMG (IEMG) of the three muscles were assessed using a one-way repeated measures ANOVA and a 3 × 3 (surface × muscle) ANOVA, respectively (p 〈 0.05). Results: The IEMG results showed a significant muscle by surface interaction. The flat surface induced higher TA activity than the two tilted surfaces. The inverted surface produced significantly higher inversion peak angle and velocity than the flat surface, but similar PL activity across the surfaces. The MG IEMG, ankle plantarflexion angle, and inversion range of motion were significantly higher for the combined surface compared to the inverted surface. Conclusion: These findings suggest that compared to the inversion surface, the combined plantarflexion and inversion surface seems to provide a more unstable surface condition for lateral ankle sprains during landing.展开更多
文摘In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773116), the National Instrumentation Program (No.2011YQ03012416), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potentials from 0.6 V to 1.0 V (vs. RHE) with the exchange current density of ca. 50 mA/cm^2 at 0.8 V, the fast kinetics of OHad desorption indicates that it should not be the rate determining step for ORR. In the kineticor kinetic-mass transport mix controlled potential region, ORR current at constant potential displays slight decrease with reaction time. ORR current in the positive-going potential scan is slightly larger than that in the subsequent negative-going scan with electrode rotation speed (〉800 r/min) and slow potential scan rate (〈100 mV/s). The open circuit potential of Pt/0.1 mol/L HClO4 interface increases promptly from 0.9 V to 1.0 V after switch from O2 free- to O2-saturated solution. The increase of open circuit potential as well as ORR current decays under potential control due to the accumulation of OHad from dissociative adsorption of O2. It indicates that at Pt(111) the net rate for O2 decomposition to OHad is slightly faster than that for OHad removal, one cannot simply use the assumption of rate determining step to discuss ORR kinetics. Instead, the ORR kinetics is determined by both the kinetics for O2 decomposition to OHad as well as the thermo-equilibrium of OHad+H^++e→←H2O.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No Y105175) and the Science investigation Foundation of Hangzhou Dianzi University, China (Grant No KYS051505010).
文摘Based on a modified Lorenz system, a relatively simple four-dimensional continuous autonomous hyperchaotic system is proposed by introducing a state feedback controller. The system consists of four coupled first-order ordinary differential equations with three nonlinear cross-product terms. Some dynamical properties of this hyperchaotic system, including equlibria, stability, Lyapunov exponent spectrum and bifurcation, are analysed in detail. Moreover, an electronic circuit diagram is designed for demonstrating the existence of the hyperchaos, and verifying computer simulation results.
文摘Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-deterrnining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are -0.118 V and -0.039 4 V, respectively, consisting with the experimental values, Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.
文摘Purpose: The purpose of this study was to examine the effects of landing kinematics and electromyographic (EMG) activities of medial gastrocnemius on a combined inversion and plantarflexion surface on the ankle (MG), peroneus longus (PL), and tibialis anterior (TA) muscles. Methods: Twelve recreational athletes performed five drop landings from an overhead bar of 30 cm height on to three surfaces: a flat surface, a 25° inversion surface, and a combined surface of 25° inversion and 25° plantarflexion. The kinematic variables and integrated EMG (IEMG) of the three muscles were assessed using a one-way repeated measures ANOVA and a 3 × 3 (surface × muscle) ANOVA, respectively (p 〈 0.05). Results: The IEMG results showed a significant muscle by surface interaction. The flat surface induced higher TA activity than the two tilted surfaces. The inverted surface produced significantly higher inversion peak angle and velocity than the flat surface, but similar PL activity across the surfaces. The MG IEMG, ankle plantarflexion angle, and inversion range of motion were significantly higher for the combined surface compared to the inverted surface. Conclusion: These findings suggest that compared to the inversion surface, the combined plantarflexion and inversion surface seems to provide a more unstable surface condition for lateral ankle sprains during landing.