This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
A simple, sensitive, and rapid analytical method is reported for the determination of surfactants. This is based on the use of an oppositely charged dye as the ion pair to form an ionic associate with the surfactant i...A simple, sensitive, and rapid analytical method is reported for the determination of surfactants. This is based on the use of an oppositely charged dye as the ion pair to form an ionic associate with the surfactant in a vessel, thus affording ion-associated adhesion on the inner wall of the vessel. After the adhesion, the remaining solution in the vessel is removed, and the ionic associate is dissolved in a suitable solvent. The absorbance of the resulting solution is measured spectrophotometrically to determine the concentration of the surfactant. Further, the mechanism of adhesion is elucidated.展开更多
The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc...The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.展开更多
Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able ...Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able to be executed naturally.Therefore,an effective retinal prosthesis device may be developed by mimicking the function of outer retina:transferring the visual light into artificial stimulus and delivering the stimulus to the retina aiming to evoke the neural responses.As two main developing directions for current retinal prosthesis,epiretinal(ER)and subretinal(SR)prosthesis are both undergoing experimental stage and possessing advantages and limitations.Further investigations in power supply,biocompatibility,etc.are still required.Additionally,suprachoroidal transretinal stimulation(STS)and neurotransmitter-induced stimulation as some other alternatives in retinal prosthesis are also considered as promising research directions,although they are not mature enough to be applied commercially,either.展开更多
The objective of this study was to investigate the hemocompatibility and cell responses to some novel poly(L-lactide) (PLA) composites containing surface modified hydroxyapatite particles for potential application...The objective of this study was to investigate the hemocompatibility and cell responses to some novel poly(L-lactide) (PLA) composites containing surface modified hydroxyapatite particles for potential applications as a bone substitute material. The surface of hydroxyapatite (HA) particles was first grafted with L-lactic acid oligomers to form grafted HA (g-HA) particles. The g-HA particles were further blended with PLA to prepare g-HA/PLA composites. Our previous study has shown signifi- cant improvement in tensile properties of these materials due to the enhanced interracial adhesion between the polymer matrix and HA particles. To further investigate the potential applications of these composites in bone repair and other orthopedic sur- geries, a series of in vitro and in vivo experiments were conducted to examine the cell responses and hemocompatibility of the materials. In vitro experiments showed that the g-HA/PLA composites were well tolerated by the L-929 cells. Hemolysis of the composites was lower than that of pure PLA. Subcutaneous implantation demonstrated that the g-HA/PLA composites were more favorable than the control materials for soft tissue responses. The results suggested that the g-HA/PLA composites are promising and safe materials with potential applications in tissue engineering.展开更多
基金NSFC(10671183)NSFHN(082300410190)+2 种基金NSF of the Education Department of Henan Province (2008A110004)the Science Foundation (07XJC002)Doctor Science Foundation of Henan University of Technology
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
文摘A simple, sensitive, and rapid analytical method is reported for the determination of surfactants. This is based on the use of an oppositely charged dye as the ion pair to form an ionic associate with the surfactant in a vessel, thus affording ion-associated adhesion on the inner wall of the vessel. After the adhesion, the remaining solution in the vessel is removed, and the ionic associate is dissolved in a suitable solvent. The absorbance of the resulting solution is measured spectrophotometrically to determine the concentration of the surfactant. Further, the mechanism of adhesion is elucidated.
基金Project(10B054)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Program of Hunan Province,China
文摘The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.
文摘Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able to be executed naturally.Therefore,an effective retinal prosthesis device may be developed by mimicking the function of outer retina:transferring the visual light into artificial stimulus and delivering the stimulus to the retina aiming to evoke the neural responses.As two main developing directions for current retinal prosthesis,epiretinal(ER)and subretinal(SR)prosthesis are both undergoing experimental stage and possessing advantages and limitations.Further investigations in power supply,biocompatibility,etc.are still required.Additionally,suprachoroidal transretinal stimulation(STS)and neurotransmitter-induced stimulation as some other alternatives in retinal prosthesis are also considered as promising research directions,although they are not mature enough to be applied commercially,either.
基金supported by the Research Fund for the Doctoral Program of Higher Education(Grant No.20060217012)
文摘The objective of this study was to investigate the hemocompatibility and cell responses to some novel poly(L-lactide) (PLA) composites containing surface modified hydroxyapatite particles for potential applications as a bone substitute material. The surface of hydroxyapatite (HA) particles was first grafted with L-lactic acid oligomers to form grafted HA (g-HA) particles. The g-HA particles were further blended with PLA to prepare g-HA/PLA composites. Our previous study has shown signifi- cant improvement in tensile properties of these materials due to the enhanced interracial adhesion between the polymer matrix and HA particles. To further investigate the potential applications of these composites in bone repair and other orthopedic sur- geries, a series of in vitro and in vivo experiments were conducted to examine the cell responses and hemocompatibility of the materials. In vitro experiments showed that the g-HA/PLA composites were well tolerated by the L-929 cells. Hemolysis of the composites was lower than that of pure PLA. Subcutaneous implantation demonstrated that the g-HA/PLA composites were more favorable than the control materials for soft tissue responses. The results suggested that the g-HA/PLA composites are promising and safe materials with potential applications in tissue engineering.