We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the con...We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the contrast in impedance and anelasticity i across interfaces, the intemal anisotropic propagation, the dispersion and attenuation along i the wave path, and tuning and interference. The results suggest that for large angles of incidence, the velocity dispersion and attenuation increase the amplitudes of PP waves from the top and decrease those from the bottom. For azimuthal responses at specific angles of incidence, the reflected wavetrains of PP waves tend to have longer duration with increasing azimuth. In contrast, model-converted PSV and PSH reflections show stable azimuthal features and are less affected by the reflector thickness. The amplitudes of PSV reflections increase with increasing azimuth; moreover, the waves have no reflection energy at 0° and 90° azimuth and maximum amplitude at 45° azimuth.展开更多
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe...In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.展开更多
Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of...Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of this device is studied according to the model.Theoretical analysis and test re- suits show that the dynamic performance of the object of study can be greatly improved by speed negative feedback.展开更多
One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing...One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.展开更多
Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different visco...Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).展开更多
A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of support...A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.展开更多
基金sponsored by the National Natural Science Foundation of China(under Grant Nos.41404090 and U1262208
文摘We propose a method for mOdeling azimuthal AVO responses from a fractured i reflector. The method calculates the integrated reflected wavetrains, and the wavetrains contain elastodynamic information including the contrast in impedance and anelasticity i across interfaces, the intemal anisotropic propagation, the dispersion and attenuation along i the wave path, and tuning and interference. The results suggest that for large angles of incidence, the velocity dispersion and attenuation increase the amplitudes of PP waves from the top and decrease those from the bottom. For azimuthal responses at specific angles of incidence, the reflected wavetrains of PP waves tend to have longer duration with increasing azimuth. In contrast, model-converted PSV and PSH reflections show stable azimuthal features and are less affected by the reflector thickness. The amplitudes of PSV reflections increase with increasing azimuth; moreover, the waves have no reflection energy at 0° and 90° azimuth and maximum amplitude at 45° azimuth.
文摘In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.
文摘Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of this device is studied according to the model.Theoretical analysis and test re- suits show that the dynamic performance of the object of study can be greatly improved by speed negative feedback.
基金Project(50608038/E0806) supported by the National Natural Science Foundation of China
文摘One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.
基金Supported by the National-Natural Science Foundation of China (20821004, 20806004) and the National High Technology Research and Development Program of China (2007AA030207, 2006AA030202, 2006AA030203).
文摘Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).
基金Supported by the National Natural Science Foundation of China (No. 20376069).
文摘A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.