In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener fi...In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.展开更多
A decentralized parallel one-pass deconvolution algorithm for multisensor systems with multiplicative noises is proposed. Comparing with the conventional deconvolution algorithm, it avoids the computational overload a...A decentralized parallel one-pass deconvolution algorithm for multisensor systems with multiplicative noises is proposed. Comparing with the conventional deconvolution algorithm, it avoids the computational overload and the high storage requirement. The algorithm is optimal in the sense of linear minimum-variance. The simulation results illustrate the validity of the proposed algorithm.展开更多
基金Project (No. PRC 03-41/2003) supported by the Ministry of Con-struction of Cuba
文摘In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.
基金This work was supported by the Science&Technology Research Key Projects of Ministry of Education of China.
文摘A decentralized parallel one-pass deconvolution algorithm for multisensor systems with multiplicative noises is proposed. Comparing with the conventional deconvolution algorithm, it avoids the computational overload and the high storage requirement. The algorithm is optimal in the sense of linear minimum-variance. The simulation results illustrate the validity of the proposed algorithm.