期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于大型语言模型微调技术的反诈骗信息识别方法研究
1
作者
彭成智
谢园园
吕光旭
《邮电设计技术》
2024年第8期53-57,共5页
针对反诈骗信息识别,对大型语言模型(LLMs)的微调技术进行了深入的实验研究。选取了3种不同规模的LLMs基础模型,并采用了LoRA和p-tuningv22种先进的微调技术,以适应特定的反诈骗信息识别任务。通过多个维度的实验评估,微调策略不仅能够...
针对反诈骗信息识别,对大型语言模型(LLMs)的微调技术进行了深入的实验研究。选取了3种不同规模的LLMs基础模型,并采用了LoRA和p-tuningv22种先进的微调技术,以适应特定的反诈骗信息识别任务。通过多个维度的实验评估,微调策略不仅能够显著提升模型在反诈骗信息识别上的性能,还能够在一定程度上保持模型的通用性。此外,探讨了LLMs在少样本情况下的学习能力,并分析了不同微调策略下的资源消耗情况。
展开更多
关键词
大型语言模型
微调技术
反诈骗信息识别
LoRA
p-tuningv2
少样本学习
下载PDF
职称材料
题名
基于大型语言模型微调技术的反诈骗信息识别方法研究
1
作者
彭成智
谢园园
吕光旭
机构
中讯邮电咨询设计院有限公司
出处
《邮电设计技术》
2024年第8期53-57,共5页
文摘
针对反诈骗信息识别,对大型语言模型(LLMs)的微调技术进行了深入的实验研究。选取了3种不同规模的LLMs基础模型,并采用了LoRA和p-tuningv22种先进的微调技术,以适应特定的反诈骗信息识别任务。通过多个维度的实验评估,微调策略不仅能够显著提升模型在反诈骗信息识别上的性能,还能够在一定程度上保持模型的通用性。此外,探讨了LLMs在少样本情况下的学习能力,并分析了不同微调策略下的资源消耗情况。
关键词
大型语言模型
微调技术
反诈骗信息识别
LoRA
p-tuningv2
少样本学习
Keywords
LLMs
Fine-tuning techniques
Anti-fraud information identification
LoRA
p-tuning v2
Few-shot learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于大型语言模型微调技术的反诈骗信息识别方法研究
彭成智
谢园园
吕光旭
《邮电设计技术》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部