A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or exc...A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.展开更多
Based on the fundamental thermodynamic principle the relationships of the residual properties, the property changes of mixing and the excess properties between the hypothetical solution of unreacted independent specie...Based on the fundamental thermodynamic principle the relationships of the residual properties, the property changes of mixing and the excess properties between the hypothetical solution of unreacted independent species and the equilibrated solution of actual species have been established. The hypothetical solution provides a way of reducing the dimensionality of problem and simplifying the analysis.展开更多
By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of g...By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitationaJ wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the easuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and conserved.展开更多
基金Project (51074185) supported by the National Natural Science Foundation of ChinaProjects (CX2009B037, CX2010B120) supported by Doctor Innovative Program of Hunan Province, China
文摘A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.
基金Supported by Zhejiang Provincial Natural Science Foundation of China.
文摘Based on the fundamental thermodynamic principle the relationships of the residual properties, the property changes of mixing and the excess properties between the hypothetical solution of unreacted independent species and the equilibrated solution of actual species have been established. The hypothetical solution provides a way of reducing the dimensionality of problem and simplifying the analysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos.1087512911075166and 11147176
文摘By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitationaJ wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the easuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and conserved.