In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction ...In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.展开更多
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b...separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.展开更多
We propose a new method to obtain the correlation length of gapped XXZ spin 1/2 antiferromagnetic chains. Following the relativistic quantum field theory in space-time dimensions, we use the exact dispersion of massi...We propose a new method to obtain the correlation length of gapped XXZ spin 1/2 antiferromagnetic chains. Following the relativistic quantum field theory in space-time dimensions, we use the exact dispersion of massive spinon to calculate the correlation length for XXZ spin 1/2 chain. We conjecture that the correlation length for other 1D lattice models can be obtained in the same way. Relation between dispersion and the oscillated correlation of gapped incommensurate lattice models is also discussed.展开更多
We extend a previous result of ours [G.S. Tian, Phys. Rev. B63 (2001) 224413] on the antiferromagnetic spin correlations in the half-filled Hubbard model at finite temperature to the double-exchange model. To overcome...We extend a previous result of ours [G.S. Tian, Phys. Rev. B63 (2001) 224413] on the antiferromagnetic spin correlations in the half-filled Hubbard model at finite temperature to the double-exchange model. To overcome the mathematical difficulty caused by the localized spin freedom in this model, we apply both Zener's argument and the finite-temperature spin-reflection-positivity method to show rigorously that, at any temperature , the spin correlations in the half-filled double-exchange model are predominantly antiferromagnetic. This conclusion is completely consistent with the experimental observations and the previous theoretical results by approximate methods.展开更多
Magnetic susceptibility of a series of dinuclear Ⅴ(Ⅳ) . Co(Ⅱ) and Mn(Ⅲ) complexes has been measured in the temperature range of 1. 5 ~300K. The isotropic Heisenberg theory has been applied to study the temperatur...Magnetic susceptibility of a series of dinuclear Ⅴ(Ⅳ) . Co(Ⅱ) and Mn(Ⅲ) complexes has been measured in the temperature range of 1. 5 ~300K. The isotropic Heisenberg theory has been applied to study the temperature-dependent behaviour of the magnetic susceptibility of these complexes and a corresponding program for fitting the experimental results has been set up on a VAX 11/785 computer. Conclusions can be drawn that the three complexes studied are all anti-ferromagnetically coupled with coupling constants -4. 4 , -115. 2 , and - 8. 4 cm ̄(-1) for Ⅴ(Ⅳ) . Co(Ⅱ) ,and Mn(Ⅲ) complexes, respectively.展开更多
The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis ...The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.展开更多
Instanton configurations of (1+1)-dimensions in an antiferromagnetic biaxial-anisotropy-spin-chain are obtained explicitly in the strong anisotropy limit, which interpolate between degenerate equilibrium orientatio...Instanton configurations of (1+1)-dimensions in an antiferromagnetic biaxial-anisotropy-spin-chain are obtained explicitly in the strong anisotropy limit, which interpolate between degenerate equilibrium orientations of the Neel vector along easy axis and are seen to be responsible for quantum tunneling. Macroscopic quantum coherence of the domain walls is demonstrated in terms of the instantons.展开更多
Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration")...Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.展开更多
文摘In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.
基金supported by the National Natural Science Foundation of China (21203017)Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-11-3)+1 种基金Program for Liaoning Excellent Talents in University (LNET)the Funda-mental Research Funds for the Central Universities (DC201502020304)~~
文摘separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.
文摘We propose a new method to obtain the correlation length of gapped XXZ spin 1/2 antiferromagnetic chains. Following the relativistic quantum field theory in space-time dimensions, we use the exact dispersion of massive spinon to calculate the correlation length for XXZ spin 1/2 chain. We conjecture that the correlation length for other 1D lattice models can be obtained in the same way. Relation between dispersion and the oscillated correlation of gapped incommensurate lattice models is also discussed.
文摘We extend a previous result of ours [G.S. Tian, Phys. Rev. B63 (2001) 224413] on the antiferromagnetic spin correlations in the half-filled Hubbard model at finite temperature to the double-exchange model. To overcome the mathematical difficulty caused by the localized spin freedom in this model, we apply both Zener's argument and the finite-temperature spin-reflection-positivity method to show rigorously that, at any temperature , the spin correlations in the half-filled double-exchange model are predominantly antiferromagnetic. This conclusion is completely consistent with the experimental observations and the previous theoretical results by approximate methods.
文摘Magnetic susceptibility of a series of dinuclear Ⅴ(Ⅳ) . Co(Ⅱ) and Mn(Ⅲ) complexes has been measured in the temperature range of 1. 5 ~300K. The isotropic Heisenberg theory has been applied to study the temperature-dependent behaviour of the magnetic susceptibility of these complexes and a corresponding program for fitting the experimental results has been set up on a VAX 11/785 computer. Conclusions can be drawn that the three complexes studied are all anti-ferromagnetically coupled with coupling constants -4. 4 , -115. 2 , and - 8. 4 cm ̄(-1) for Ⅴ(Ⅳ) . Co(Ⅱ) ,and Mn(Ⅲ) complexes, respectively.
文摘The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.
基金Supported by the Natural Science Basic Research Plan in Henan Province of China under Grant No.2007140009
文摘Instanton configurations of (1+1)-dimensions in an antiferromagnetic biaxial-anisotropy-spin-chain are obtained explicitly in the strong anisotropy limit, which interpolate between degenerate equilibrium orientations of the Neel vector along easy axis and are seen to be responsible for quantum tunneling. Macroscopic quantum coherence of the domain walls is demonstrated in terms of the instantons.
文摘Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.