In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feed...In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feedback and two types of time-delayed feedback, to a small fraction of network nodes to reach desired synchronous state. Two controlled bifurcation diagrams verses feedback strength are obtained respectively. It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as e is increased linearly. The GML with SF loses synchronization and intermittency occurs if γ 〉 γc. Numerical examples are presented to demonstrate all results.展开更多
This paper studies the problem of making an arbitrary discrete system chaotic, or enhancing its existing chaotic behaviors, by designing a universal controller. The only assumption is that the arbitrarily given system...This paper studies the problem of making an arbitrary discrete system chaotic, or enhancing its existing chaotic behaviors, by designing a universal controller. The only assumption is that the arbitrarily given system has a bounded first derivative in a (small) region of interest.展开更多
基金The project supported by the Key Program of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005 The authors thank Drs. Atay and Chun-Guang Li for their useful advices and discussions.
文摘In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feedback and two types of time-delayed feedback, to a small fraction of network nodes to reach desired synchronous state. Two controlled bifurcation diagrams verses feedback strength are obtained respectively. It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as e is increased linearly. The GML with SF loses synchronization and intermittency occurs if γ 〉 γc. Numerical examples are presented to demonstrate all results.
基金This research is partially supported by the National Natural Science Foundation (Grant No. 19971057)the Hong Kong RGC (Grant No. CERG 9040579).
文摘This paper studies the problem of making an arbitrary discrete system chaotic, or enhancing its existing chaotic behaviors, by designing a universal controller. The only assumption is that the arbitrarily given system has a bounded first derivative in a (small) region of interest.