The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the su...The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the subsystems of the distributed control system in HT-7 tokamak (HT7DCS). The main function of the subsystem is to control the plasma density on real-time. For this reason, the real-time capability and good stability are the most significant factors, which will influence the control results. Since the former plasma density feedback control system (FPDFCS) based on Windows operation system could not fulfill such requirements well, a new subsystem has to be developed. The paper describes the upgrade of the plasma density feedback control system (UPDFCS), based on the dual operation system (Windows and Linux), in detail.展开更多
In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chanc...In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chance to join the network routing. However, considering m ost of the communications in opportunistic networks are caused by forwarding operations, there is no need to establish the complete mutual authentications for each conversation. Accordingly, a novel trust management scheme is presented based on the information of behavior feedback, in order to complement the insufficiency of identity authentications. By utilizing the certificate chains based on social attributes, the mobile nodes build the local certificate graphs gradually to realize the web of "Identity Trust" relationship. Meanwhile, the successors generate Verified Feedback Packets for each positive behavior, and consequently the "Behavior Trust" relationship is formed for slow-moving nodes. Simulation result shows that, by implementing our trust scheme, the d elivery probability and trust reconstruction ratio can be effectively improved when there are large numbers of compromised nodes, and it means that our trust management scheme can efficiently explore and filter the trust nodes for secure forwarding in opportunistic networks.展开更多
文摘The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the subsystems of the distributed control system in HT-7 tokamak (HT7DCS). The main function of the subsystem is to control the plasma density on real-time. For this reason, the real-time capability and good stability are the most significant factors, which will influence the control results. Since the former plasma density feedback control system (FPDFCS) based on Windows operation system could not fulfill such requirements well, a new subsystem has to be developed. The paper describes the upgrade of the plasma density feedback control system (UPDFCS), based on the dual operation system (Windows and Linux), in detail.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT1078)the Key Program of NSFC-Guangdong Union Foundation (U1135002)+3 种基金the Major national S&T program(2012ZX03002003)the Fundamental Research Funds for the Central Universities(JY10000903001)the National Natural Sci ence Foundation of China (Grant No. 61363068, 61100233)the Natural Science Foundation of Shaanxi Province (Grant No. 2012JM8030, 2011JQ8003)
文摘In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chance to join the network routing. However, considering m ost of the communications in opportunistic networks are caused by forwarding operations, there is no need to establish the complete mutual authentications for each conversation. Accordingly, a novel trust management scheme is presented based on the information of behavior feedback, in order to complement the insufficiency of identity authentications. By utilizing the certificate chains based on social attributes, the mobile nodes build the local certificate graphs gradually to realize the web of "Identity Trust" relationship. Meanwhile, the successors generate Verified Feedback Packets for each positive behavior, and consequently the "Behavior Trust" relationship is formed for slow-moving nodes. Simulation result shows that, by implementing our trust scheme, the d elivery probability and trust reconstruction ratio can be effectively improved when there are large numbers of compromised nodes, and it means that our trust management scheme can efficiently explore and filter the trust nodes for secure forwarding in opportunistic networks.