Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is ...Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance.展开更多
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique...This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.展开更多
This paper introduces the finding of some chaotic attractors in a kind of n-dimensional autonomous hybrid system, which is realized via applying some discontinuous state feedback to a kind of n linear differential sys...This paper introduces the finding of some chaotic attractors in a kind of n-dimensional autonomous hybrid system, which is realized via applying some discontinuous state feedback to a kind of n linear differential system. And a constructive theorem is proposed for generalized synchronization related to the above chaotic hybrid systems. Examples are presented for illustrating the methods.展开更多
In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feed...In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feedback and two types of time-delayed feedback, to a small fraction of network nodes to reach desired synchronous state. Two controlled bifurcation diagrams verses feedback strength are obtained respectively. It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as e is increased linearly. The GML with SF loses synchronization and intermittency occurs if γ 〉 γc. Numerical examples are presented to demonstrate all results.展开更多
In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation er...In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.展开更多
This paper studies the problem of making an arbitrary discrete system chaotic, or enhancing its existing chaotic behaviors, by designing a universal controller. The only assumption is that the arbitrarily given system...This paper studies the problem of making an arbitrary discrete system chaotic, or enhancing its existing chaotic behaviors, by designing a universal controller. The only assumption is that the arbitrarily given system has a bounded first derivative in a (small) region of interest.展开更多
A novel hyperchaotic system derived from Liu system is proposed in this paper. Lyapunov exponent, phase portrait and Poincare mapping are given to verify that the system is hyperchaotic. A controller is designed to co...A novel hyperchaotic system derived from Liu system is proposed in this paper. Lyapunov exponent, phase portrait and Poincare mapping are given to verify that the system is hyperchaotic. A controller is designed to compel the hyperchaotic system to converge into the equilibrium. It is proved theoretically that this control law is feasible and valid by Lyapunov second method. Based on linear feedback synchronization control principle, synchronization control of the novel hyperchaotic system is realized. Numerical simulation shows that this synchronization method is simple and effective. As long as the proper linear feedback control vector is chosen, it is easy to achieve the rapid synchronization between the driving system and response system.展开更多
文摘Backstepping method is applied to the problems of synchronization for chaotic systems. Synchronization controller is designed via selecting a series of Lyapunov functions on the basis of recursive idea. The method is systematic and can deal with a class of chaotic system′s synchronization problems, which are important in safe communication with chaotic signal. Due to the nature of backstepping method, the designed controller possesses perfect robustness and adaptation. As an example, the controller based on backstepping method is employed to synchronize Lorenz system. The numerical simulation illustrates that the method is effective. Compared with the linear feedback synchronization controller, the control law can stabilize synchronization systems at a smaller synchronization error. Therefore the controller has a good performance.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60774039,60974024,and 61074089CityU Research Enhancement Fund 9360127,CityU SRG 7002355
文摘This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60074034 and 70271068
文摘This paper introduces the finding of some chaotic attractors in a kind of n-dimensional autonomous hybrid system, which is realized via applying some discontinuous state feedback to a kind of n linear differential system. And a constructive theorem is proposed for generalized synchronization related to the above chaotic hybrid systems. Examples are presented for illustrating the methods.
基金The project supported by the Key Program of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005 The authors thank Drs. Atay and Chun-Guang Li for their useful advices and discussions.
文摘In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feedback and two types of time-delayed feedback, to a small fraction of network nodes to reach desired synchronous state. Two controlled bifurcation diagrams verses feedback strength are obtained respectively. It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as e is increased linearly. The GML with SF loses synchronization and intermittency occurs if γ 〉 γc. Numerical examples are presented to demonstrate all results.
文摘In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.
基金This research is partially supported by the National Natural Science Foundation (Grant No. 19971057)the Hong Kong RGC (Grant No. CERG 9040579).
文摘This paper studies the problem of making an arbitrary discrete system chaotic, or enhancing its existing chaotic behaviors, by designing a universal controller. The only assumption is that the arbitrarily given system has a bounded first derivative in a (small) region of interest.
文摘A novel hyperchaotic system derived from Liu system is proposed in this paper. Lyapunov exponent, phase portrait and Poincare mapping are given to verify that the system is hyperchaotic. A controller is designed to compel the hyperchaotic system to converge into the equilibrium. It is proved theoretically that this control law is feasible and valid by Lyapunov second method. Based on linear feedback synchronization control principle, synchronization control of the novel hyperchaotic system is realized. Numerical simulation shows that this synchronization method is simple and effective. As long as the proper linear feedback control vector is chosen, it is easy to achieve the rapid synchronization between the driving system and response system.