目的:由于强化流加培养工艺(intensified fed batch of ultra-high seeding density,uHSD-IFB)的接种密度与运行密度较高,传统低密度培养工艺的流加策略往往不能提供充足的营养物质用于该过程的细胞维持与产物表达,最终导致过程产率低...目的:由于强化流加培养工艺(intensified fed batch of ultra-high seeding density,uHSD-IFB)的接种密度与运行密度较高,传统低密度培养工艺的流加策略往往不能提供充足的营养物质用于该过程的细胞维持与产物表达,最终导致过程产率低、经济性下降;通过优化流加培养基以及补料方案,成功建立CHO细胞强化流加培养过程,从而提高目的蛋白产量。方法:以一株表达单克隆抗体的CHO-K1细胞株为研究对象,通过代谢动力学与化学计量学分析,设计出以葡萄糖为控制模型的两阶段动态反馈流加策略,并结合实验设计(design of experiment,DoE)筛选并优化流加培养基中关键微量元素的营养浓度。结果:优化设计后的uHSD-IFB过程有效缓解了uHSD-IFB过程营养物质的耗竭与代谢副产物累积之间的矛盾,实现了超高接种密度培养工艺的细胞生长与产物合成的目的;累积产量相较于优化前提高了95%,日体积产量提高了约97%。结论:该补料策略有助于快速建立高细胞密度、高产物表达的高接种密度强化流加培养过程。展开更多
The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presen...The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presented. The large-signal model of it is also derived. Based on the comprehensive analysis of the system model, the compensator is designed to make the system match better and to improve its dynamic performance and the stability under perturbations. Finally, the design methods and the analysis are verified by simulation and experimental results.展开更多
文摘目的:由于强化流加培养工艺(intensified fed batch of ultra-high seeding density,uHSD-IFB)的接种密度与运行密度较高,传统低密度培养工艺的流加策略往往不能提供充足的营养物质用于该过程的细胞维持与产物表达,最终导致过程产率低、经济性下降;通过优化流加培养基以及补料方案,成功建立CHO细胞强化流加培养过程,从而提高目的蛋白产量。方法:以一株表达单克隆抗体的CHO-K1细胞株为研究对象,通过代谢动力学与化学计量学分析,设计出以葡萄糖为控制模型的两阶段动态反馈流加策略,并结合实验设计(design of experiment,DoE)筛选并优化流加培养基中关键微量元素的营养浓度。结果:优化设计后的uHSD-IFB过程有效缓解了uHSD-IFB过程营养物质的耗竭与代谢副产物累积之间的矛盾,实现了超高接种密度培养工艺的细胞生长与产物合成的目的;累积产量相较于优化前提高了95%,日体积产量提高了约97%。结论:该补料策略有助于快速建立高细胞密度、高产物表达的高接种密度强化流加培养过程。
文摘The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presented. The large-signal model of it is also derived. Based on the comprehensive analysis of the system model, the compensator is designed to make the system match better and to improve its dynamic performance and the stability under perturbations. Finally, the design methods and the analysis are verified by simulation and experimental results.