Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assum...Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closed- loop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach. Index TermsmAdaptive control, neural networks (NNs), non- linear pure-feedback systems, time-varying constraints.展开更多
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad...Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.展开更多
The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Rec...The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Recently, several proposals for fulfilling the quality of service(QoS) guarantees have been presented. However, they can only support coarse-grained QoS with no guarantee of throughput, jitter, delay or loss rate for different applications. To address these more challenging problems, an adaptive scheduling algorithm for Parallel data Processing with Multiple Feedback(PPMF) queues based on software defined networks(SDN) is proposed in this paper, which can guarantee the quality of service of high priority traffic in multimedia applications. PPMF combines the queue bandwidth feedback mechanism to realise the automatic adjustment of the queue bandwidth according to the priority of the packet and network conditions, which can effectively solve the problem of network congestion that has been experienced by some queues for a long time. Experimental results show PPMF significantly outperforms other existing scheduling approaches in achieving 35--80% improvement on average time delay by adjusting the bandwidth adaptively, thus ensuring the transmission quality of the specified traffic and avoiding effectively network congestion.展开更多
Due to the broadcast nature of wireless transmission medium,security threats may hinder propagation of cognitive radio systems for commercial and military data application. This paper sets a channel error analytical f...Due to the broadcast nature of wireless transmission medium,security threats may hinder propagation of cognitive radio systems for commercial and military data application. This paper sets a channel error analytical framework and studies the joint impact of estimation errors and feedback delay on secrecy performance in cognitive radio networks. Under the assumption that system applies beamforming and jamming scheme,a multi-antenna cognitive base station( CBS) sends confidential signals to a secondary user( SU) in the presence of M primary users( PUs) and an eavesdropper. Assuming only imperfect channel state information( CSI) about the receivers is available,secrecy rate,outage probability,secrecy throughput are deduced to obtain a closed-form expression. It is shown that while the transmit power increases,secrecy throughput would reach to a constant. Simulation results show that feedback delay adversely impacts on secrecy rate,connection outage probability and secrecy throughput,while estimation error causes more impact on secrecy outage probability. Furthermore,the secrecy rate could increase progressively with the transmit power only if there exists no feedback delay.展开更多
A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback c...A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach.展开更多
Search engines have greatly helped us to find the desired information from the Internet. Most search engines use keywords matching technique. This paper discusses a Dynamic Knowledge Base based Search Engine (DKBSE)...Search engines have greatly helped us to find the desired information from the Internet. Most search engines use keywords matching technique. This paper discusses a Dynamic Knowledge Base based Search Engine (DKBSE), which can expand the user's query using the keywords' concept or meaning. To do this, the DKBSE needs to construct and maintain the knowledge base dynamically via the system's searching results and the user's feedback information. The DKBSE expands the user's initial query using the knowledge base, and returns the searched information after the expanded query.展开更多
In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chanc...In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chance to join the network routing. However, considering m ost of the communications in opportunistic networks are caused by forwarding operations, there is no need to establish the complete mutual authentications for each conversation. Accordingly, a novel trust management scheme is presented based on the information of behavior feedback, in order to complement the insufficiency of identity authentications. By utilizing the certificate chains based on social attributes, the mobile nodes build the local certificate graphs gradually to realize the web of "Identity Trust" relationship. Meanwhile, the successors generate Verified Feedback Packets for each positive behavior, and consequently the "Behavior Trust" relationship is formed for slow-moving nodes. Simulation result shows that, by implementing our trust scheme, the d elivery probability and trust reconstruction ratio can be effectively improved when there are large numbers of compromised nodes, and it means that our trust management scheme can efficiently explore and filter the trust nodes for secure forwarding in opportunistic networks.展开更多
Based on the analysis of current Quality of Service (QoS) management on IP network, new genera-tion of QoS architecture QoSAF is proposed. QoSAF is divided into three layers: resource control layer, net-work service l...Based on the analysis of current Quality of Service (QoS) management on IP network, new genera-tion of QoS architecture QoSAF is proposed. QoSAF is divided into three layers: resource control layer, net-work service layer and business layer. QoS management is accomplished by interactivity of layers. In this ar-chitecture, mechanism of feedback control enhances the functions of resource management and system moni-toring. The principle of design and logical architecture of system is discussed in detail.展开更多
In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,prop...In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.展开更多
The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memor...The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.展开更多
The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control sys...The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.展开更多
In this paper, we conduct research on the O2O mode and corresponding influence on the online and offline Internet marketing. Precision marketing is on the basis of fully understanding of consumer information, accordin...In this paper, we conduct research on the O2O mode and corresponding influence on the online and offline Internet marketing. Precision marketing is on the basis of fully understanding of consumer information, according to its characteristics and primary preferences targeted to carry out the one-to-one marketing. Mobile Internet users are mostly fixed which can be the new network technology in-depth insight into consumer interest and demand, and to establish for each specific customer database. Based on the analysis of customer data, then according to the characteristics of the different customers and the preference information such as the precision marketing, at the same time which can also according to customer' s feedback information targeted adjustment of products and the marketing, in order to better meet the needs of customers. Our research combines the O2O concepts and the technique to propose the novel marketing paradigm which is of great importance.展开更多
In recent years,context aware technology has been widely used in many fields,such as internet of vehicles(IoV).Consistent context information plays a vital role in adapting a system to rapidly changing situations.Howe...In recent years,context aware technology has been widely used in many fields,such as internet of vehicles(IoV).Consistent context information plays a vital role in adapting a system to rapidly changing situations.However,sensor's precision variance,equipment heterogeneity,network delay and the difference of statistical algorithms can lead to inconsistency context and inappropriate services.In this paper,we present an effective algorithm of context inconsistent elimination which is based on feedback and adjusted basic reliability distribution.Through feedback,each sensor's perception precision can be obtained,and with the adjusted basic reliability distribution scheme,we can make full use of all context information by adjusting the influence of every context on whole judgment based on sensor's perception precision and threshold of sensor's perception precision,and then eliminate context inconsistency.In order to evaluate the performance of the proposed context inconsistency elimination algorithm,context aware rate is defined.The simulation results show that the proposed context inconsistency elimination algorithm can obtain the best context aware rate in most cases for the varied error rates of sensors.展开更多
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金supported in part by the National Natural Science Foundation of China(61622303,61603164,61773188)the Program for Liaoning Innovative Research Team in University(LT2016006)+1 种基金the Fundamental Research Funds for the Universities of Liaoning Province(JZL201715402)the Program for Distinguished Professor of Liaoning Province
文摘Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closed- loop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach. Index TermsmAdaptive control, neural networks (NNs), non- linear pure-feedback systems, time-varying constraints.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grants Nos. 70371068 and 10247005
文摘Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
基金supported by National Key Basic Research Program of China(973 Program)under grant no.2012CB315802National Natural Science Foundation of China under grant no.61671081 and no.61132001Prospective Research on Future Networks of Jiangsu Future Networks Innovation Institute under grant no.BY2013095-4-01
文摘The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Recently, several proposals for fulfilling the quality of service(QoS) guarantees have been presented. However, they can only support coarse-grained QoS with no guarantee of throughput, jitter, delay or loss rate for different applications. To address these more challenging problems, an adaptive scheduling algorithm for Parallel data Processing with Multiple Feedback(PPMF) queues based on software defined networks(SDN) is proposed in this paper, which can guarantee the quality of service of high priority traffic in multimedia applications. PPMF combines the queue bandwidth feedback mechanism to realise the automatic adjustment of the queue bandwidth according to the priority of the packet and network conditions, which can effectively solve the problem of network congestion that has been experienced by some queues for a long time. Experimental results show PPMF significantly outperforms other existing scheduling approaches in achieving 35--80% improvement on average time delay by adjusting the bandwidth adaptively, thus ensuring the transmission quality of the specified traffic and avoiding effectively network congestion.
基金Supported by the National Natural Science Foundation of China(No.61371122,61471393)the China Postdoctoral Science Foundation under a Special Financial Grant(No.2013T60912)
文摘Due to the broadcast nature of wireless transmission medium,security threats may hinder propagation of cognitive radio systems for commercial and military data application. This paper sets a channel error analytical framework and studies the joint impact of estimation errors and feedback delay on secrecy performance in cognitive radio networks. Under the assumption that system applies beamforming and jamming scheme,a multi-antenna cognitive base station( CBS) sends confidential signals to a secondary user( SU) in the presence of M primary users( PUs) and an eavesdropper. Assuming only imperfect channel state information( CSI) about the receivers is available,secrecy rate,outage probability,secrecy throughput are deduced to obtain a closed-form expression. It is shown that while the transmit power increases,secrecy throughput would reach to a constant. Simulation results show that feedback delay adversely impacts on secrecy rate,connection outage probability and secrecy throughput,while estimation error causes more impact on secrecy outage probability. Furthermore,the secrecy rate could increase progressively with the transmit power only if there exists no feedback delay.
基金Project(61433004)suppouted by the National Natural Science Foundation of China
文摘A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach.
文摘Search engines have greatly helped us to find the desired information from the Internet. Most search engines use keywords matching technique. This paper discusses a Dynamic Knowledge Base based Search Engine (DKBSE), which can expand the user's query using the keywords' concept or meaning. To do this, the DKBSE needs to construct and maintain the knowledge base dynamically via the system's searching results and the user's feedback information. The DKBSE expands the user's initial query using the knowledge base, and returns the searched information after the expanded query.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT1078)the Key Program of NSFC-Guangdong Union Foundation (U1135002)+3 种基金the Major national S&T program(2012ZX03002003)the Fundamental Research Funds for the Central Universities(JY10000903001)the National Natural Sci ence Foundation of China (Grant No. 61363068, 61100233)the Natural Science Foundation of Shaanxi Province (Grant No. 2012JM8030, 2011JQ8003)
文摘In the harsh environment where n ode density is sparse, the slow-moving nodes cannot effectively utilize the encountering opportunities to realize the self-organized identity authentications, and do not have the chance to join the network routing. However, considering m ost of the communications in opportunistic networks are caused by forwarding operations, there is no need to establish the complete mutual authentications for each conversation. Accordingly, a novel trust management scheme is presented based on the information of behavior feedback, in order to complement the insufficiency of identity authentications. By utilizing the certificate chains based on social attributes, the mobile nodes build the local certificate graphs gradually to realize the web of "Identity Trust" relationship. Meanwhile, the successors generate Verified Feedback Packets for each positive behavior, and consequently the "Behavior Trust" relationship is formed for slow-moving nodes. Simulation result shows that, by implementing our trust scheme, the d elivery probability and trust reconstruction ratio can be effectively improved when there are large numbers of compromised nodes, and it means that our trust management scheme can efficiently explore and filter the trust nodes for secure forwarding in opportunistic networks.
基金Partially supported by the Research Fund for the Doc-toral Program of Higher Education (No.20010013003), the National Natural Science Foundation of China (No.90204003), the 863 program (No.2003AA121220), and the 973 program (No.2003CB314806).
文摘Based on the analysis of current Quality of Service (QoS) management on IP network, new genera-tion of QoS architecture QoSAF is proposed. QoSAF is divided into three layers: resource control layer, net-work service layer and business layer. QoS management is accomplished by interactivity of layers. In this ar-chitecture, mechanism of feedback control enhances the functions of resource management and system moni-toring. The principle of design and logical architecture of system is discussed in detail.
基金supported by the National Natural Science Foundation of China(NSFC) under Grant(No. 61461136001)
文摘In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.
基金Project(51105170) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.
基金Project(61025015)supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject (IRT1044)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China+2 种基金Projects(61143004,61203136,61074067,61273185)supported by the National Natural Science Foundation of ChinaProjects(12JJ4062,11JJ2033)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12C0078)supported by Hunan Provincial Department of Education,China
文摘The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.
文摘In this paper, we conduct research on the O2O mode and corresponding influence on the online and offline Internet marketing. Precision marketing is on the basis of fully understanding of consumer information, according to its characteristics and primary preferences targeted to carry out the one-to-one marketing. Mobile Internet users are mostly fixed which can be the new network technology in-depth insight into consumer interest and demand, and to establish for each specific customer database. Based on the analysis of customer data, then according to the characteristics of the different customers and the preference information such as the precision marketing, at the same time which can also according to customer' s feedback information targeted adjustment of products and the marketing, in order to better meet the needs of customers. Our research combines the O2O concepts and the technique to propose the novel marketing paradigm which is of great importance.
基金supported by Scientific Research Foundation for the Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2012DX024)Independent Innovation Foundation of Shandong University(No.2012ZD035)Technical Innovative Project of Shandong Province(No.201230201031,No.201320201024)
文摘In recent years,context aware technology has been widely used in many fields,such as internet of vehicles(IoV).Consistent context information plays a vital role in adapting a system to rapidly changing situations.However,sensor's precision variance,equipment heterogeneity,network delay and the difference of statistical algorithms can lead to inconsistency context and inappropriate services.In this paper,we present an effective algorithm of context inconsistent elimination which is based on feedback and adjusted basic reliability distribution.Through feedback,each sensor's perception precision can be obtained,and with the adjusted basic reliability distribution scheme,we can make full use of all context information by adjusting the influence of every context on whole judgment based on sensor's perception precision and threshold of sensor's perception precision,and then eliminate context inconsistency.In order to evaluate the performance of the proposed context inconsistency elimination algorithm,context aware rate is defined.The simulation results show that the proposed context inconsistency elimination algorithm can obtain the best context aware rate in most cases for the varied error rates of sensors.