We have developed a compact photoelectron imaging facility, including an anion source with dissociative photoelectron attachment to molecules, a linear time-of-flight mass spec-trometry (TOFMS), and an orthogonal hi...We have developed a compact photoelectron imaging facility, including an anion source with dissociative photoelectron attachment to molecules, a linear time-of-flight mass spec-trometry (TOFMS), and an orthogonal high-resolution threshold photoelectron velocity map imaging spectrometer (VMI). Intense and cold cluster anions were prepared in photoelectron- attachment processes upon pulsed UV laser ablation of metal target. Combining this anion source with TOFMS-VMI, the achieved mass resolution is about 200, and the electron ki- netic energy resolution is better than 3%, i.e., 30 meV for 1 eV electrons. More importantly, low-energy photoelectron imaging spectra for CH3S- and S2- at 611.46 nm are obtained. In both cases, the refined electron affinities are determined to be 1.86264-0.0020 eV for CH3S and 1.67444-0.0035 eV for S2, respectively. Preliminary results suggest that the apparatus is a powerful tool for estimating precise electron affinities values from threshold photoelectron imaging spectroscopy.展开更多
文摘We have developed a compact photoelectron imaging facility, including an anion source with dissociative photoelectron attachment to molecules, a linear time-of-flight mass spec-trometry (TOFMS), and an orthogonal high-resolution threshold photoelectron velocity map imaging spectrometer (VMI). Intense and cold cluster anions were prepared in photoelectron- attachment processes upon pulsed UV laser ablation of metal target. Combining this anion source with TOFMS-VMI, the achieved mass resolution is about 200, and the electron ki- netic energy resolution is better than 3%, i.e., 30 meV for 1 eV electrons. More importantly, low-energy photoelectron imaging spectra for CH3S- and S2- at 611.46 nm are obtained. In both cases, the refined electron affinities are determined to be 1.86264-0.0020 eV for CH3S and 1.67444-0.0035 eV for S2, respectively. Preliminary results suggest that the apparatus is a powerful tool for estimating precise electron affinities values from threshold photoelectron imaging spectroscopy.