The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies ...The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.展开更多
A multi-responsive D-A type compound(CYQ)based on pyrone and triphenylamine was designed and successfully synthesized. The target compound exhibited distinct aggregation-enhanced emission(AEE) effect.Solvatochromic ex...A multi-responsive D-A type compound(CYQ)based on pyrone and triphenylamine was designed and successfully synthesized. The target compound exhibited distinct aggregation-enhanced emission(AEE) effect.Solvatochromic experiment and density functional theory(DFT) indicated CYQ possessed excellent intramolecular charge transfer(ICT) ability. Besides, its mechanofluorochromic property(MFC) was found with a 37 nm redshift. Powder wide-angle X-ray diffraction(PXRD) and differential scanning calorimetry(DSC) measurements were performed to demonstrate the transformation from the crystalline to amorphous states upon grinding. Surprisingly,CYQ displayed a hypersensitive response to trace water in organic solvents with an excellent detection limit as low as 0.0096% in tetrahydrofuran(THF). Furthermore, it was found that the fluorescent intensity of CYQ declined progressively upon humidity rise, and its color change can be witnessed by naked eyes. Therefore, the relative humidity(RH) sensing strategy guarantees the AIEgen to become a colorimetric sensor under various conditions.展开更多
文摘The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.
基金financial support from the National Natural Science Foundation of China (21576194)
文摘A multi-responsive D-A type compound(CYQ)based on pyrone and triphenylamine was designed and successfully synthesized. The target compound exhibited distinct aggregation-enhanced emission(AEE) effect.Solvatochromic experiment and density functional theory(DFT) indicated CYQ possessed excellent intramolecular charge transfer(ICT) ability. Besides, its mechanofluorochromic property(MFC) was found with a 37 nm redshift. Powder wide-angle X-ray diffraction(PXRD) and differential scanning calorimetry(DSC) measurements were performed to demonstrate the transformation from the crystalline to amorphous states upon grinding. Surprisingly,CYQ displayed a hypersensitive response to trace water in organic solvents with an excellent detection limit as low as 0.0096% in tetrahydrofuran(THF). Furthermore, it was found that the fluorescent intensity of CYQ declined progressively upon humidity rise, and its color change can be witnessed by naked eyes. Therefore, the relative humidity(RH) sensing strategy guarantees the AIEgen to become a colorimetric sensor under various conditions.