It is difficult to directly dope europium complexes in gel because the excessive water or high acidic condition may lead to their decomposition. We prepared a novel homogeneous TiO2 gel containing Eu-phen complexes by...It is difficult to directly dope europium complexes in gel because the excessive water or high acidic condition may lead to their decomposition. We prepared a novel homogeneous TiO2 gel containing Eu-phen complexes by using an in-situ synthesis method. The formation of Eu-phen complexes in sol-gel derived TiO2 was confirmed by luminescence excitation spectra. The effects of temperature and aging time on in-situ synthesis are discussed. The luminescence spectra of gel containing europium complexes were also compared with the pure Eu-phen complexes.展开更多
In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier tr...In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SG n-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their catalytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG 2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Meanwhile, the optimal condition for the catalytic oxidation of SG 2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3:1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.展开更多
Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid s...Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube.展开更多
基金Project (No. 2004C210023) supported by Science Planning Project of Zhejiang Province, China
文摘It is difficult to directly dope europium complexes in gel because the excessive water or high acidic condition may lead to their decomposition. We prepared a novel homogeneous TiO2 gel containing Eu-phen complexes by using an in-situ synthesis method. The formation of Eu-phen complexes in sol-gel derived TiO2 was confirmed by luminescence excitation spectra. The effects of temperature and aging time on in-situ synthesis are discussed. The luminescence spectra of gel containing europium complexes were also compared with the pure Eu-phen complexes.
基金Supported by the National Natural Science Foundation of China (20901063) the Natural Science Foundation of Hubei Province (2011CDB221)
文摘In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SG n-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their catalytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG 2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Meanwhile, the optimal condition for the catalytic oxidation of SG 2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3:1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.
文摘Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube.