A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results...A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined展开更多
The paper proposes a novel pneumatic-fuel hybrid system,which combines a traditional internal combustion engine(ICE)and a pneumatic engine.One important merit of this concept is that the system can recover waste from ...The paper proposes a novel pneumatic-fuel hybrid system,which combines a traditional internal combustion engine(ICE)and a pneumatic engine.One important merit of this concept is that the system can recover waste from cooling water of internal combustion engine to optimize the working process of pneumatic engine,and thus to improve the entire efficiency of the hybrid system.Meanwhile,energy-saving effect due to lower cooling fan power can be achieved on ICE by waste heat recovery of pneumatic engine.Based on thermodynamic analysis,an experimental system is designed and established for verification.The experimental results show that the performance of pneumatic engine is improved when the waste heat recovery concept of the hybrid system is applied.Then an application example on a 4-cylinder engine is analyzed and discussed using numerical simulation.The results show that the fan power of the ICE cooling system can be saved up to 50%by applying the hybrid system.Considering the appreciable improvements on the energy efficiency with only limited system modifications when the concept is applied to traditional ICE based power systems,the proposed hybrid concept has the potential to serve as an alternative technology aiming for energy saving and emission reduction.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2011CB707201)the National Natural Science Foundation of China(No.51206117)
文摘A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined
基金supported by the National Natural Science Foundation of China(Grant No.50976104)the National Basic Research Program of China("973" Program)(Grant No.2011CB707205)
文摘The paper proposes a novel pneumatic-fuel hybrid system,which combines a traditional internal combustion engine(ICE)and a pneumatic engine.One important merit of this concept is that the system can recover waste from cooling water of internal combustion engine to optimize the working process of pneumatic engine,and thus to improve the entire efficiency of the hybrid system.Meanwhile,energy-saving effect due to lower cooling fan power can be achieved on ICE by waste heat recovery of pneumatic engine.Based on thermodynamic analysis,an experimental system is designed and established for verification.The experimental results show that the performance of pneumatic engine is improved when the waste heat recovery concept of the hybrid system is applied.Then an application example on a 4-cylinder engine is analyzed and discussed using numerical simulation.The results show that the fan power of the ICE cooling system can be saved up to 50%by applying the hybrid system.Considering the appreciable improvements on the energy efficiency with only limited system modifications when the concept is applied to traditional ICE based power systems,the proposed hybrid concept has the potential to serve as an alternative technology aiming for energy saving and emission reduction.