期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
人工神经网络在HCCI发动机上的应用研究 被引量:1
1
作者 孙宏杰 彭溢文 +1 位作者 荆家乐 黄栋杰 《汽车实用技术》 2021年第10期196-197,共2页
文章主要介绍了人工神经网络在HCCI发动机上的应用现状。重点从人工神经网络对HCCI发动机的运转特性和排放特性的预测、失火检测、燃烧初始时刻预测以及发动机实时控制方面的应用进行论述,并对未来人工神经网络在HCCI发动机上的应用前... 文章主要介绍了人工神经网络在HCCI发动机上的应用现状。重点从人工神经网络对HCCI发动机的运转特性和排放特性的预测、失火检测、燃烧初始时刻预测以及发动机实时控制方面的应用进行论述,并对未来人工神经网络在HCCI发动机上的应用前景做了展望。 展开更多
关键词 均质压燃 人工神经网络 发动机性能预测
下载PDF
Aeroengine Performance Parameter Prediction Based on Improved Regularization Extreme Learning Machine
2
作者 CAO Yuyuan ZHANG Bowen WANG Huawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期545-559,共15页
Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machin... Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machine(RELM)is one of them.However,the regularization parameter determination of RELM consumes computational resources,which makes it unsuitable in the field of aeroengine performance parameter prediction with a large amount of data.This paper uses the forward and backward segmentation(FBS)algorithms to improve the RELM performance,and introduces an adaptive step size determination method and an improved solution mechanism to obtain a new machine learning algorithm.While maintaining good generalization,the new algorithm is not sensitive to regularization parameters,which greatly saves computing resources.The experimental results on the public data sets prove the above conclusions.Finally,the new algorithm is applied to the prediction of aero-engine performance parameters,and the excellent prediction performance is achieved. 展开更多
关键词 extreme learning machine AEROENGINE performance parameter prediction forward and backward segmentation algorithms
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部