Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carrie...Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.展开更多
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect ...In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operatin g parameters on combustion rate was also studied by means of this model. The stu dy showed that the predicted results were good agreement with the experimental d a ta. It was proved that the developed combustion rate model could be used to succ essfully predict and optimize the combustion process of dual fuel engine.展开更多
A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge ...A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.展开更多
Methyl or ethyl esters of vegetable oils are the reliable alternative fuels for the petroleum diesel, because their properties are very nearer to the petroleum diesel. But the flash point and auto-ignition temperature...Methyl or ethyl esters of vegetable oils are the reliable alternative fuels for the petroleum diesel, because their properties are very nearer to the petroleum diesel. But the flash point and auto-ignition temperatures are very high for these esters. CR (compression ratio) is one of the parameter which influences the atomization and vaporization of fuel. It is also caused for improvement in the turbulence which leads to better combustion. In this work the single cylinder diesel engine was tested at different compression ratios i.e. 16.5:1, 17.5:1, 18.5:1, 19:1 with palm kernel methyl ester without modifications. On increasing compression ratio closeness of molecules of air increases and fuel is injected into that air caused for better combustion. The inbuilt oxygen of methyl or ethyl ester will participate in the combustion and causes for reduction of HC and CO. Better compression ratio for an engine with particular fuel provides satisfactory thermal efficiency and less environmental pollution. In the investigations, for palm kernel methyl ester, 18.5:1 compression ratio is preferable on single cylinder Dl-diesel engine.展开更多
基金Project(2011BAE22B05)supported by the National Science and Technology Pillar Program during the 12th Five-year Plan of China
文摘Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.
文摘In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operatin g parameters on combustion rate was also studied by means of this model. The stu dy showed that the predicted results were good agreement with the experimental d a ta. It was proved that the developed combustion rate model could be used to succ essfully predict and optimize the combustion process of dual fuel engine.
基金Supported by National Natural Science Foundation of China ( No. 50576064)Youth Foundation of Tianjin University (No. W50201).
文摘A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.
文摘Methyl or ethyl esters of vegetable oils are the reliable alternative fuels for the petroleum diesel, because their properties are very nearer to the petroleum diesel. But the flash point and auto-ignition temperatures are very high for these esters. CR (compression ratio) is one of the parameter which influences the atomization and vaporization of fuel. It is also caused for improvement in the turbulence which leads to better combustion. In this work the single cylinder diesel engine was tested at different compression ratios i.e. 16.5:1, 17.5:1, 18.5:1, 19:1 with palm kernel methyl ester without modifications. On increasing compression ratio closeness of molecules of air increases and fuel is injected into that air caused for better combustion. The inbuilt oxygen of methyl or ethyl ester will participate in the combustion and causes for reduction of HC and CO. Better compression ratio for an engine with particular fuel provides satisfactory thermal efficiency and less environmental pollution. In the investigations, for palm kernel methyl ester, 18.5:1 compression ratio is preferable on single cylinder Dl-diesel engine.