The paper presents the results of the experimental research which was carried out on the spark ignition engine, experimental model, fuelled with hydrogen by direct injection method, using qualitative load adjustment m...The paper presents the results of the experimental research which was carried out on the spark ignition engine, experimental model, fuelled with hydrogen by direct injection method, using qualitative load adjustment method for engine running control. Also, the hydrogen injection solution at the beginning of the compression stroke, after the inlet valve closing, assures the cylinder cooling by inlet air avoiding in that way uncontrolled ignition phenomena and inlet back fire. Using this fueling method avoided the abnormally hydrogen combustion phenomena's for stoichiometric dosage operating conditions, achieving -30 % engine power increase. Hydrogen engine runs with very lean mixtures, due to engine load qualitative adjustment, a dosage value that leads to a reduction of the engine power with -25% from maximum power value. This provides a higher engine efficiency at low loads, the best results was obtained for λ=2- 4 air-fuel ratio values. The influence of the mixture quality on burning process, on polluting and energetically engine performances at the fuelling with hydrogen using direct injection method are presented. Because of the higher combustion temperature, the NOx emission level is higher for λ=1 - 2 comparative to gasoline fuelled engine, but decreases a lot for leaner mixture values, λ〉2.5.展开更多
文摘The paper presents the results of the experimental research which was carried out on the spark ignition engine, experimental model, fuelled with hydrogen by direct injection method, using qualitative load adjustment method for engine running control. Also, the hydrogen injection solution at the beginning of the compression stroke, after the inlet valve closing, assures the cylinder cooling by inlet air avoiding in that way uncontrolled ignition phenomena and inlet back fire. Using this fueling method avoided the abnormally hydrogen combustion phenomena's for stoichiometric dosage operating conditions, achieving -30 % engine power increase. Hydrogen engine runs with very lean mixtures, due to engine load qualitative adjustment, a dosage value that leads to a reduction of the engine power with -25% from maximum power value. This provides a higher engine efficiency at low loads, the best results was obtained for λ=2- 4 air-fuel ratio values. The influence of the mixture quality on burning process, on polluting and energetically engine performances at the fuelling with hydrogen using direct injection method are presented. Because of the higher combustion temperature, the NOx emission level is higher for λ=1 - 2 comparative to gasoline fuelled engine, but decreases a lot for leaner mixture values, λ〉2.5.