Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su...Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.展开更多
In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the...In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the characteristics were compared with those of background noise received from a real hydraulic turbine unit. It is found that the AE parameters such as the energy and duration can qualitatively describe the fatigue state of the blades. The correlations of crack propagation rates and acoustic emission count rates vs stress intensity factor (SIF) range are also obtained. At the same time, for the specimens of 20SiMn under the given testing conditions, it is noted that the rise time and duration of events emitted from the fatigue process are lower than those from the background noise; amplitude range is 49-74 dB, which is lower than that of the noise (90-99 dB); frequency range of main energy of crack signals is higher than 60 kHz while that in the noise is lower than 55 kHz. Thus, it is possible to extract the useful crack signals from the noise through appropriate signal processing methods and to represent the crack status of blade materials by AE parameters. As a result, it is feasible to monitor the safety of runners using AE technique.展开更多
Rockburst occurred frequently during deep mining in China. The mechanism of rockburst is very complicated and related to many factors. In order to investigate the influence of moisture contents of rockmass on rockburs...Rockburst occurred frequently during deep mining in China. The mechanism of rockburst is very complicated and related to many factors. In order to investigate the influence of moisture contents of rockmass on rockburst, we conducted a series of laboratory rockburst experiments of sandstone under three different moisture contents by the Modified True-Triaxial Apparatus (MTTA),in which the acoustic emission (AE) system was employed to monitor the internal damage of rock mass. A high-speed video camera was utilized to record the detail of rockburst. Based on the experimental results, the AE characteristics, such as AE count,AE energy, and AE frequency, were analyzed. The rockburst process, type, and indensity under different moisture contents were discussed. The research results show that with the increase of moisture contents, rock strength was soften, the elastic and the cumulative damage of the rock were reduced, resulting in a gradual decrease in AE cumulative counts and cumulative energy over the course of rockburst. This study provides an experimental basis and reference for better understanding to the rockburst mechanism and control.展开更多
基金Projects(52225403,U2013603,42377143)supported by the National Natural Science Foundation of ChinaProject(2023NSFSC0004)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2023YFB2390200)supported by the National Key R&D Program-Young Scientist Program,ChinaProject(RCJC20210706091948015)supported by the Shenzhen Science Foundation for Distinguished Young Scholars,China。
文摘Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.
基金Project(50465002) supported by the National Natural Science Foundation of China
文摘In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the characteristics were compared with those of background noise received from a real hydraulic turbine unit. It is found that the AE parameters such as the energy and duration can qualitatively describe the fatigue state of the blades. The correlations of crack propagation rates and acoustic emission count rates vs stress intensity factor (SIF) range are also obtained. At the same time, for the specimens of 20SiMn under the given testing conditions, it is noted that the rise time and duration of events emitted from the fatigue process are lower than those from the background noise; amplitude range is 49-74 dB, which is lower than that of the noise (90-99 dB); frequency range of main energy of crack signals is higher than 60 kHz while that in the noise is lower than 55 kHz. Thus, it is possible to extract the useful crack signals from the noise through appropriate signal processing methods and to represent the crack status of blade materials by AE parameters. As a result, it is feasible to monitor the safety of runners using AE technique.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51374214 , 51134005 & 51574248)the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Rockburst occurred frequently during deep mining in China. The mechanism of rockburst is very complicated and related to many factors. In order to investigate the influence of moisture contents of rockmass on rockburst, we conducted a series of laboratory rockburst experiments of sandstone under three different moisture contents by the Modified True-Triaxial Apparatus (MTTA),in which the acoustic emission (AE) system was employed to monitor the internal damage of rock mass. A high-speed video camera was utilized to record the detail of rockburst. Based on the experimental results, the AE characteristics, such as AE count,AE energy, and AE frequency, were analyzed. The rockburst process, type, and indensity under different moisture contents were discussed. The research results show that with the increase of moisture contents, rock strength was soften, the elastic and the cumulative damage of the rock were reduced, resulting in a gradual decrease in AE cumulative counts and cumulative energy over the course of rockburst. This study provides an experimental basis and reference for better understanding to the rockburst mechanism and control.