In this paper,a portable 2.42 GHz transmitter for wireless communication systems,with 8dBm output power and small size is proposed.Several novel features exist in this transmitter.First,power consumption and output ar...In this paper,a portable 2.42 GHz transmitter for wireless communication systems,with 8dBm output power and small size is proposed.Several novel features exist in this transmitter.First,power consumption and output are balanced by introducing a differential oscillator with input signal controlled biasing,which acts as both a carrier generator and an OOK modulator.Then,power consumption of the transmitter is reduced by the OOK modulated signal via switching the oscillator and the power amplifier at the same time.Furthermore,the area size is also reduced by a class-AB power amplifier,which uses the PCB antenna as the resonance inductance.With these features,the total chip area is reduced to 670μm×740μm(In a 0.18μm CMOS process).展开更多
We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional(2D) hexagonal photonic crystal(PC) airbridge double-heterostructure microcavity with Er-doped silicon(Si) as light emitters o...We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional(2D) hexagonal photonic crystal(PC) airbridge double-heterostructure microcavity with Er-doped silicon(Si) as light emitters on siliconon-insulator(SOI) wafer at room temperature.A single sharp resonant peak at 1 529.6 nm dominates the photoluminescence(PL) spectrum with the pumping power of 12.5 m W.The obvious red shift and the degraded quality factor(Q-factor) of resonant peak appear with the pumping power increasing,and the maximum measured Q-factor of 4 905 is achieved at the pumping power of 1.5 m W.The resonant peak is observed to shift depending on the structural parameters of PC,which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.展开更多
The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, R...The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, RF generator, low-level system, computer system and cavity cooling. The cavity is based on the coaxial resonator type which is short at the terminal with one gap and loaded with domestic ferrite rings. The RF generator is designed in a push-pull mode. The low-level control system is based on PID, DSP, FPGA and DDS9854+USB interface and has three feedback loops. This RF system is designed independently and manufactured domestically. For the first time, it realized the pulse modulation, variable harmonic and CW operational modes. The maximum output power is up to 70 kW and the 10 kV RF voltage is used to capture the irradiative beam and decelerate the beam from 400 to 30 MeV/u.展开更多
基金Supported by the National Natural Science Foundation of China(No.61072010)
文摘In this paper,a portable 2.42 GHz transmitter for wireless communication systems,with 8dBm output power and small size is proposed.Several novel features exist in this transmitter.First,power consumption and output are balanced by introducing a differential oscillator with input signal controlled biasing,which acts as both a carrier generator and an OOK modulator.Then,power consumption of the transmitter is reduced by the OOK modulated signal via switching the oscillator and the power amplifier at the same time.Furthermore,the area size is also reduced by a class-AB power amplifier,which uses the PCB antenna as the resonance inductance.With these features,the total chip area is reduced to 670μm×740μm(In a 0.18μm CMOS process).
基金supported by the National Natural Science Foundation of China(No.61205044)
文摘We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional(2D) hexagonal photonic crystal(PC) airbridge double-heterostructure microcavity with Er-doped silicon(Si) as light emitters on siliconon-insulator(SOI) wafer at room temperature.A single sharp resonant peak at 1 529.6 nm dominates the photoluminescence(PL) spectrum with the pumping power of 12.5 m W.The obvious red shift and the degraded quality factor(Q-factor) of resonant peak appear with the pumping power increasing,and the maximum measured Q-factor of 4 905 is achieved at the pumping power of 1.5 m W.The resonant peak is observed to shift depending on the structural parameters of PC,which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.
文摘The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, RF generator, low-level system, computer system and cavity cooling. The cavity is based on the coaxial resonator type which is short at the terminal with one gap and loaded with domestic ferrite rings. The RF generator is designed in a push-pull mode. The low-level control system is based on PID, DSP, FPGA and DDS9854+USB interface and has three feedback loops. This RF system is designed independently and manufactured domestically. For the first time, it realized the pulse modulation, variable harmonic and CW operational modes. The maximum output power is up to 70 kW and the 10 kV RF voltage is used to capture the irradiative beam and decelerate the beam from 400 to 30 MeV/u.