Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scal...Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.展开更多
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement...We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.展开更多
We propose QCD inspired model to calculate ^-pp and pp elastic scatterings at high energies in this paper. A calculation for total cross section of ^-pp and pp is performed in which the contributions from gluon-gluon,...We propose QCD inspired model to calculate ^-pp and pp elastic scatterings at high energies in this paper. A calculation for total cross section of ^-pp and pp is performed in which the contributions from gluon-gluon, quark-quark, and gluon-quark interactions are included. Our results show that the QCD inspired model gives a perfect fit to experimental data of total cross section both for ^-pp and pp elastic scatterings at the whole energy region where experimental data existed at FNAL and CERN.展开更多
The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features...The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.展开更多
Using core-scattered closed-orbit theory and region-splitting iterative method, we calculated the scaled recurrence spectra of helium atom in parallel electric and magnetic fields. Closed orbits in the corresponding c...Using core-scattered closed-orbit theory and region-splitting iterative method, we calculated the scaled recurrence spectra of helium atom in parallel electric and magnetic fields. Closed orbits in the corresponding classical system have also been obtained. When we search the closed orbits, in order to remove the Coulomb singularity of the classical Hamiltonian motion equations, we implement the Kustaanheimo-Stiefel transformation, which transforms the system from a three-dimensional to a four-dimensional one. The Fourier transformed spectrum of helium atom has allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The results are compared with those of the hydrogen case, which shows that the core-scattered effects play an important role in the recurrence spectra of the multi-electron Rydberg atom.展开更多
基金Supported by the National Natural Science Foundation of China(20776121) the Scientific Fund of Hunan Provincial Education Department(07C765 07C744)
文摘Based on trajectory equations of gas bubble,an eddy-bubble interaction(EBI)model was developed. This model considered the effect of non-drag forces and took the eddy-bubble interaction time as the refreshing time scale of turbulent fluctuations.The relationship between the crossing-eddy time and the eddy lifetime was discussed,and the predicted distributions of radial,axial velocities of bubbles and gas holdup were also given. Compared with eddy lifetime(EL)model,the EBI model gives somewhat smaller axial velocity in the upper circulation region and larger velocity in the lower circulation region,causing that fewer bubbles reach the lower circulation region and gas holdup becomes higher in the upper circulation region.The predicted gas holdup by the EBI model approaches closer to the experimental data in the discharge stream region.
文摘We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10647002 and 10565001 and the Science Foundation of Guangxi Province of China under Grant Nos. 0481030, 0542042, and 0575020
文摘We propose QCD inspired model to calculate ^-pp and pp elastic scatterings at high energies in this paper. A calculation for total cross section of ^-pp and pp is performed in which the contributions from gluon-gluon, quark-quark, and gluon-quark interactions are included. Our results show that the QCD inspired model gives a perfect fit to experimental data of total cross section both for ^-pp and pp elastic scatterings at the whole energy region where experimental data existed at FNAL and CERN.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447105 and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20050027001
文摘The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.
文摘Using core-scattered closed-orbit theory and region-splitting iterative method, we calculated the scaled recurrence spectra of helium atom in parallel electric and magnetic fields. Closed orbits in the corresponding classical system have also been obtained. When we search the closed orbits, in order to remove the Coulomb singularity of the classical Hamiltonian motion equations, we implement the Kustaanheimo-Stiefel transformation, which transforms the system from a three-dimensional to a four-dimensional one. The Fourier transformed spectrum of helium atom has allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The results are compared with those of the hydrogen case, which shows that the core-scattered effects play an important role in the recurrence spectra of the multi-electron Rydberg atom.