The mining industry annually consumes trillions of British thermal units of energy,a large part of which is saveable.Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the m...The mining industry annually consumes trillions of British thermal units of energy,a large part of which is saveable.Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the major users of this energy source.Cross vehicle weight,truck velocity and total resistance have been recognised as the key parameters affecting the fuel consumption.In this paper,an artificial neural network model was developed to predict the fuel consumption of haul trucks in surface mines based on the gross vehicle weight,truck velocity and total resistance.The network was trained and tested using real data collected from a surface mining operation.The results indicate that the artificial neural network modelling can accurately predict haul truck fuel consumption based on the values of the haulage parameters considered in this study.展开更多
The goal of this paper describes kinematic viscosity and shear stress of two used engine oils, which have been taken from two different passenger cars. Kinematic viscosity and shear stress are two of the most importan...The goal of this paper describes kinematic viscosity and shear stress of two used engine oils, which have been taken from two different passenger cars. Kinematic viscosity and shear stress are two of the most important physical behaviours of fluids, especially lubricating fluids. In this paper the authors have focused on engine oil. Knowledge of these properties of engine oil is very important due to its lifetime. The experiments have been done using digital rotary rheometer Anton Paar DV-3 P with use of TR8 spindle and special adapter for a small amount of sample (20 mL). Two different engine oils have been observed--first from passenger car Renault Scenic with petrol engine (engine capacity 1.6 dm3) and the second from passenger car Skoda Roomster with diesel engine (engine capacity 1.4 dm3). Castrol Magnatec 10W-40 engine oil has been taken from Renault car and Shell Helix Ultra Extra 5W-30 engine oil has been taken from ~koda car. Service interval of change oil has been set to 15,000 km and samples of used engine oils have been taken after 1,500 km. Only first samples of used engine oils have been taken after raid of 20 km. All samples of used engine oils have been compared with new (unused) engine oils same specification. The measured values of kinematic viscosity and shear stress have been modeled using linear function. The coefficients of correlation R have been achieved high values (0.88-0.96). The obtained models can be used to prediction of engine oil flow behaviour.展开更多
The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery techno...The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery technology with stamping charger for stamping and preparation a blend of coals for charging and coking. Stamping technology adds several benefits to the process, such as increased density, homogeneity and alignment of the coal cake charged into the oven, as well as provides better control of the coking process, improves parameters of coke quality and allows coal blending with lower coking power, thereby reducing the production cost of coke and power generation. Through the automation of stamping charger, it is possible to evaluate and calculate the stamped coal density charged and the productivity gains this system provides.展开更多
This work discusses the combination of two thermodynamic cycles seeking to improve the overall chemical energy conversion rate into mechanical energy. Here one engine operates according a Rankine cycle in order to use...This work discusses the combination of two thermodynamic cycles seeking to improve the overall chemical energy conversion rate into mechanical energy. Here one engine operates according a Rankine cycle in order to use part of the thermal energy released to the boundary, i.e., the neighboring atmosphere. The analysis of this combined cycle shows that it might, under proper condition, represent a gain of 1.2% in the overall delivered engine power.展开更多
Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramat...Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.展开更多
Together with development of the industry, there is present a continuous increase number of motor vehicles that contributes to the growth of the emission of pollutants. This is the main reason that during eighties of ...Together with development of the industry, there is present a continuous increase number of motor vehicles that contributes to the growth of the emission of pollutants. This is the main reason that during eighties of the last century, a special attention has started to be paid on pollution emissions from vehicles. It is important to note that most of the current emissions are formed directly and are present in urban areas. The aim of this research was to determine the emission of pollutants in the territory of the Republic of Kosovo, when circulates more than 380,000 motor vehicles. Taking into consideration the daily traffic jam, and the fact that gasoline engines are responsible for most emissions of CO, while diesel engines for NOx emission, the conclusion arises that there is necessary a special dedication to the emission of pollutants and to the definition of the measures to reduce or control them. Based on the performed tests and realistic assessment of the overall situation in the Republic of Kosovo, the current situation on the amount of pollution was compared with development countries in the region as a matter in the research. The results obtained, suggest to the most important causes that increase pollutant emission from motor vehicles and offer actions to keep the same level or to reduce them.展开更多
基金CRC Mining and The University of Queensland for their financial support for this study
文摘The mining industry annually consumes trillions of British thermal units of energy,a large part of which is saveable.Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the major users of this energy source.Cross vehicle weight,truck velocity and total resistance have been recognised as the key parameters affecting the fuel consumption.In this paper,an artificial neural network model was developed to predict the fuel consumption of haul trucks in surface mines based on the gross vehicle weight,truck velocity and total resistance.The network was trained and tested using real data collected from a surface mining operation.The results indicate that the artificial neural network modelling can accurately predict haul truck fuel consumption based on the values of the haulage parameters considered in this study.
文摘The goal of this paper describes kinematic viscosity and shear stress of two used engine oils, which have been taken from two different passenger cars. Kinematic viscosity and shear stress are two of the most important physical behaviours of fluids, especially lubricating fluids. In this paper the authors have focused on engine oil. Knowledge of these properties of engine oil is very important due to its lifetime. The experiments have been done using digital rotary rheometer Anton Paar DV-3 P with use of TR8 spindle and special adapter for a small amount of sample (20 mL). Two different engine oils have been observed--first from passenger car Renault Scenic with petrol engine (engine capacity 1.6 dm3) and the second from passenger car Skoda Roomster with diesel engine (engine capacity 1.4 dm3). Castrol Magnatec 10W-40 engine oil has been taken from Renault car and Shell Helix Ultra Extra 5W-30 engine oil has been taken from ~koda car. Service interval of change oil has been set to 15,000 km and samples of used engine oils have been taken after 1,500 km. Only first samples of used engine oils have been taken after raid of 20 km. All samples of used engine oils have been compared with new (unused) engine oils same specification. The measured values of kinematic viscosity and shear stress have been modeled using linear function. The coefficients of correlation R have been achieved high values (0.88-0.96). The obtained models can be used to prediction of engine oil flow behaviour.
文摘The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery technology with stamping charger for stamping and preparation a blend of coals for charging and coking. Stamping technology adds several benefits to the process, such as increased density, homogeneity and alignment of the coal cake charged into the oven, as well as provides better control of the coking process, improves parameters of coke quality and allows coal blending with lower coking power, thereby reducing the production cost of coke and power generation. Through the automation of stamping charger, it is possible to evaluate and calculate the stamped coal density charged and the productivity gains this system provides.
文摘This work discusses the combination of two thermodynamic cycles seeking to improve the overall chemical energy conversion rate into mechanical energy. Here one engine operates according a Rankine cycle in order to use part of the thermal energy released to the boundary, i.e., the neighboring atmosphere. The analysis of this combined cycle shows that it might, under proper condition, represent a gain of 1.2% in the overall delivered engine power.
基金National Natural Science Foundation of China ( No. 50976046)
文摘Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.
文摘Together with development of the industry, there is present a continuous increase number of motor vehicles that contributes to the growth of the emission of pollutants. This is the main reason that during eighties of the last century, a special attention has started to be paid on pollution emissions from vehicles. It is important to note that most of the current emissions are formed directly and are present in urban areas. The aim of this research was to determine the emission of pollutants in the territory of the Republic of Kosovo, when circulates more than 380,000 motor vehicles. Taking into consideration the daily traffic jam, and the fact that gasoline engines are responsible for most emissions of CO, while diesel engines for NOx emission, the conclusion arises that there is necessary a special dedication to the emission of pollutants and to the definition of the measures to reduce or control them. Based on the performed tests and realistic assessment of the overall situation in the Republic of Kosovo, the current situation on the amount of pollution was compared with development countries in the region as a matter in the research. The results obtained, suggest to the most important causes that increase pollutant emission from motor vehicles and offer actions to keep the same level or to reduce them.