Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar inte...Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar intertransverse fusion in rabbits. Methods: Sixty four adult female New Zealand white rabbits, aged 1 year and weighing 3.5 4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP 2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively. Conclusions: The nHA/collagen, especially combined with rhBMP 2, is a promising bone substitute, for it has quick biodegradation, fine bone bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.展开更多
The method of plasma-spray coating of hy- droxyapatite (HA) onto pure titanium has been demon- strated to be effective to enhance the osteogenic differentiation and accelerate bone regeneration. Yet it is still a bi...The method of plasma-spray coating of hy- droxyapatite (HA) onto pure titanium has been demon- strated to be effective to enhance the osteogenic differentiation and accelerate bone regeneration. Yet it is still a big challenge to figure out the interplay among im- plant surface properties, adsorbed proteins and cell-surface interactions. In this study, the plasma-sprayed HA-coated titanium (HA-Ti) surface was compared with the titanium substrate in terms of protein adsorption, cell adhesion and differentiation. The phase composition, wettability and to- pography were characterized. Compared to the Ti substrate, the HA-Ti had a smaller water contact angle, but larger micro-scale roughness, and showed a poorer ability to ad- sorb fibronectin (Fn), bovine serum albumin (BSA) and serum proteins. However, it could adsorb larger amount of recombinant human bone morphogenetic protein 2 (BMP- 2). The osteoblasts and bone marrow mesenchymal stem cells (BMSCs) tended to adhere on the Ti substrate. By contrast, the BMSCs cultured on the HA-Ti showed a stronger tendency toward osteogenesis differentiation.展开更多
文摘Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar intertransverse fusion in rabbits. Methods: Sixty four adult female New Zealand white rabbits, aged 1 year and weighing 3.5 4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP 2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively. Conclusions: The nHA/collagen, especially combined with rhBMP 2, is a promising bone substitute, for it has quick biodegradation, fine bone bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.
基金supported by the National Basic Research Program of China(2011CB606203)the National Natural Science Foundation of China(21434006,21374097)
文摘The method of plasma-spray coating of hy- droxyapatite (HA) onto pure titanium has been demon- strated to be effective to enhance the osteogenic differentiation and accelerate bone regeneration. Yet it is still a big challenge to figure out the interplay among im- plant surface properties, adsorbed proteins and cell-surface interactions. In this study, the plasma-sprayed HA-coated titanium (HA-Ti) surface was compared with the titanium substrate in terms of protein adsorption, cell adhesion and differentiation. The phase composition, wettability and to- pography were characterized. Compared to the Ti substrate, the HA-Ti had a smaller water contact angle, but larger micro-scale roughness, and showed a poorer ability to ad- sorb fibronectin (Fn), bovine serum albumin (BSA) and serum proteins. However, it could adsorb larger amount of recombinant human bone morphogenetic protein 2 (BMP- 2). The osteoblasts and bone marrow mesenchymal stem cells (BMSCs) tended to adhere on the Ti substrate. By contrast, the BMSCs cultured on the HA-Ti showed a stronger tendency toward osteogenesis differentiation.