In this paper, the boundary value problem (BVP) of 3 D transient eddy current field in the end region in the case that the generator is affected by impact load is specified. Besides, ways to implement discrete method...In this paper, the boundary value problem (BVP) of 3 D transient eddy current field in the end region in the case that the generator is affected by impact load is specified. Besides, ways to implement discrete methods in both time domain and space domain during the solution of the problem are investigated. The Crank Nicolson scheme is utilized to attain the iterative format of time differential, after taking factors that can ensure both computation precision and stability into consideration. In this paper, the magnetic distribution in the end region of a turbogenerator in the case that the generator is affected by impact load is specified. As a result, it provides foundation for further study of electromagnetic force and electromagnetic vibration in the end region of the turbogenerator.展开更多
On the basis of the study of transient eddy current field in the end region of turbogenerator and electromagnetic force of end region winding, this paper analyzes the electromagnetic vibration of the turbogenerator r...On the basis of the study of transient eddy current field in the end region of turbogenerator and electromagnetic force of end region winding, this paper analyzes the electromagnetic vibration of the turbogenerator roundly. A 320 MW turbogenerator is taken as an example to specify the electromagnetic force of end region winding and therefore the vibration in the case that the generator is affected by impact load. Some conclusions are drawn on the basis of the specification. Vibration of windings under imaginary faults is simulated, so that the vibration law of the end winding of turbogenerator can be studied further. On the basis of this, the countermeasure against winding vibration can be advanced.展开更多
A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for ha...A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for harvesting vibration energy, which on the other hand, leads to a damping effect of the hydraulic damper. To make the damping force variable, an adjustable resistor is adopted to tune the capability of energy harvesting. The present approach is validated by both theoretical analysis and experimental evaluation. When connected with different resistance loads, the prototype damper has different equivalent damping coefficients ranging from 3. 987 × 104 to 2. 488 × 105 N· s/m. The results show that the damping force of the damper is variable in response to the adjustable load for the vibration energy harvesting.展开更多
A torque distribution strategy was designed by using fuzzy logic to realize the optimal control. The vehicle load zones were dynamically divided into several zones by several torque lines to indicate the drivers deman...A torque distribution strategy was designed by using fuzzy logic to realize the optimal control. The vehicle load zones were dynamically divided into several zones by several torque lines to indicate the drivers demand and the high or low efficient operating areas of the diesel engine. The fuzzy logic controller with trapezoid membership function and Mamdani rule reference mechanism was utilized. There are over 100 rules used in this fuzzy-based torque distribution strategy which are sorted into four rule-bases. The fuel economy and acceleration tests were designed to test and validate the integrated starter/generator (ISG) bus perfor-mance using fuzzy-based torque distribution strategy. The fuel economy is improved 7.7% compared with the rule-based strategy. Finally the road test results reveal that there is about 15% improvement of fuel economy. And the 0-50 km/h acceleration time is 9.5% shorter than the original bus.展开更多
As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was...As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.展开更多
The advantages of permanent magnet linear synchronous motors (PMLSM) include high speed and good motion precision compared with rotary motors. However, PMLSM are sensitive to uncertainties such as the parameter pert...The advantages of permanent magnet linear synchronous motors (PMLSM) include high speed and good motion precision compared with rotary motors. However, PMLSM are sensitive to uncertainties such as the parameter perturbations and end effect etc. A new nonlinear robust scheme of PMLSM is proposed to overcome this trouble. First, a quasi-linearized and deeoupled model with uncertainties is derived from the mathematical model of PMLSM by using the conception of feedback linearization. Then a fixed-boundary-layer sliding mode controller using the m sat function is designed to guarantee the robustness. Design of a force observer is given to estimate the load force unknown in the new model. Finally, the validity of the proposed strategy compared with the conventional PID control scheme is proved by the DSpobased experimental results.展开更多
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platfo...The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.展开更多
This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation ...This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.展开更多
The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/trib...The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.展开更多
We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both ...We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m^3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m^3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.展开更多
An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security regi...An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security region(PDSR) of a power system with double fed induction generators(DFIG) can be approximated by one or few hyper-planes in nodal power injection space, transient stability criterion for given configurations of pre-fault, fault-on and post-fault of a power system is to be expressed by certain expressions of linear combination of nodal injection vector and the transient stability probability(TSP) is further obtained with a much more simplified expression than the complex integral. Furthermore, considering uncertainties of nodal injection power including wind power and load, TSP is calculated analytically by Cornish-Fisher expansion, which can provide reliable evaluation results with high accuracy and much less computing time compared with Monte Carlo simulation. TSP and its visualization can further help operators and planners be aware of the degree of stability or instability and find critical components to monitor and reinforce. Test results on the New England 10-generators and 39-buses power system show the method's effectiveness and significance for probabilistic security assessment.展开更多
文摘In this paper, the boundary value problem (BVP) of 3 D transient eddy current field in the end region in the case that the generator is affected by impact load is specified. Besides, ways to implement discrete methods in both time domain and space domain during the solution of the problem are investigated. The Crank Nicolson scheme is utilized to attain the iterative format of time differential, after taking factors that can ensure both computation precision and stability into consideration. In this paper, the magnetic distribution in the end region of a turbogenerator in the case that the generator is affected by impact load is specified. As a result, it provides foundation for further study of electromagnetic force and electromagnetic vibration in the end region of the turbogenerator.
文摘On the basis of the study of transient eddy current field in the end region of turbogenerator and electromagnetic force of end region winding, this paper analyzes the electromagnetic vibration of the turbogenerator roundly. A 320 MW turbogenerator is taken as an example to specify the electromagnetic force of end region winding and therefore the vibration in the case that the generator is affected by impact load. Some conclusions are drawn on the basis of the specification. Vibration of windings under imaginary faults is simulated, so that the vibration law of the end winding of turbogenerator can be studied further. On the basis of this, the countermeasure against winding vibration can be advanced.
基金The National Natural Science Foundation of China(No.51375517)the Natural Science Foundation of CQ CSTC(No.2012JJJQ70001)the Project of Chongqing Innovation Team in University(No.KJTD201313)
文摘A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for harvesting vibration energy, which on the other hand, leads to a damping effect of the hydraulic damper. To make the damping force variable, an adjustable resistor is adopted to tune the capability of energy harvesting. The present approach is validated by both theoretical analysis and experimental evaluation. When connected with different resistance loads, the prototype damper has different equivalent damping coefficients ranging from 3. 987 × 104 to 2. 488 × 105 N· s/m. The results show that the damping force of the damper is variable in response to the adjustable load for the vibration energy harvesting.
文摘A torque distribution strategy was designed by using fuzzy logic to realize the optimal control. The vehicle load zones were dynamically divided into several zones by several torque lines to indicate the drivers demand and the high or low efficient operating areas of the diesel engine. The fuzzy logic controller with trapezoid membership function and Mamdani rule reference mechanism was utilized. There are over 100 rules used in this fuzzy-based torque distribution strategy which are sorted into four rule-bases. The fuel economy and acceleration tests were designed to test and validate the integrated starter/generator (ISG) bus perfor-mance using fuzzy-based torque distribution strategy. The fuel economy is improved 7.7% compared with the rule-based strategy. Finally the road test results reveal that there is about 15% improvement of fuel economy. And the 0-50 km/h acceleration time is 9.5% shorter than the original bus.
基金Projects(51475464,51175500) supported by the National Natural Science Foundation of China
文摘As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.
文摘The advantages of permanent magnet linear synchronous motors (PMLSM) include high speed and good motion precision compared with rotary motors. However, PMLSM are sensitive to uncertainties such as the parameter perturbations and end effect etc. A new nonlinear robust scheme of PMLSM is proposed to overcome this trouble. First, a quasi-linearized and deeoupled model with uncertainties is derived from the mathematical model of PMLSM by using the conception of feedback linearization. Then a fixed-boundary-layer sliding mode controller using the m sat function is designed to guarantee the robustness. Design of a force observer is given to estimate the load force unknown in the new model. Finally, the validity of the proposed strategy compared with the conventional PID control scheme is proved by the DSpobased experimental results.
基金Foundation item: Supported by the 111 Project under Grant No.B07019, and the National Natural Science Foundation of China under Grant No.50979020.
文摘The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
文摘This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.
基金supported by the National Natural Science Foundation of China(Grant Nos.61525107,51422510&51605449)the National High Technology Research and Development Program of China(Grant No.2015AA042601)
文摘The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.
基金This work was supported by Beijing Natural Science Foundation (No. 2154059), National Natural Science Foundation of China (Nos. 51472055 and 61404034), and the "Thousands Talents" program for pioneer researcher and his innovation team, China.
文摘We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m^3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m^3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB228204)the National Natural Science Foundation of China(Grant No.51407126)Tianjin Natural Science Foundation(Grant No.15JCQNJC07000)
文摘An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security region(PDSR) of a power system with double fed induction generators(DFIG) can be approximated by one or few hyper-planes in nodal power injection space, transient stability criterion for given configurations of pre-fault, fault-on and post-fault of a power system is to be expressed by certain expressions of linear combination of nodal injection vector and the transient stability probability(TSP) is further obtained with a much more simplified expression than the complex integral. Furthermore, considering uncertainties of nodal injection power including wind power and load, TSP is calculated analytically by Cornish-Fisher expansion, which can provide reliable evaluation results with high accuracy and much less computing time compared with Monte Carlo simulation. TSP and its visualization can further help operators and planners be aware of the degree of stability or instability and find critical components to monitor and reinforce. Test results on the New England 10-generators and 39-buses power system show the method's effectiveness and significance for probabilistic security assessment.