A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general...A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.展开更多
This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among mul...This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2006AA05Z231)the National Natural Science Foundation of China(No.51177025)
文摘A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.
基金Sponsored by the Indiana 21stCentury Research and Technology Fund
文摘This paper presents a novel design procedure for optimizing the power distribution strategy in distributed generation system. A coordinating controller, responsible to distribute the total load power request among multiple DG units, is suggested based on the conception of hierarchical control structure in the dynamic system. The optimal control problem was formulated as a nonlinear optimization problem subject to set of constraints. The resulting problem was solved using the Kuhn-Tucker method. Computer simulation results demonstrate that the proposed method can provide better efficiency in terms of reducing total costs compared to existing methods. In addition, the proposed optimal load distribution strategy can be easily implemented in real-time thanks to the simplicity of closed-form solutions.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.