针对具有约束和扰动的多区域互联电力系统负荷频率控制(load frequency control,LFC)问题,本文提出了一种事件触发分布式模型预测控制(event-triggered distributed model predictive control,ET-DMPC)策略.将大规模互联电力系统分解成...针对具有约束和扰动的多区域互联电力系统负荷频率控制(load frequency control,LFC)问题,本文提出了一种事件触发分布式模型预测控制(event-triggered distributed model predictive control,ET-DMPC)策略.将大规模互联电力系统分解成多个动态耦合的子系统,考虑发电机变化率约束(generation rate constraint,GRC)和调速器阀门位置限制,建立分布式预测控制优化问题.为了降低系统计算负担,减少计算资源的消耗和浪费,基于预测值和系统实际状态的误差构造事件触发条件.在事件触发机制下,只有子系统满足相应的事件触发条件时,控制器才传输状态信息和求解优化问题,并与邻域子系统交互最优解作用下的关联信息.仿真结果表明,本文提出的控制策略在负荷扰动和系统参数不确定的情况下具有良好的鲁棒性,同时极大地降低了系统的计算负担.展开更多
文摘针对具有约束和扰动的多区域互联电力系统负荷频率控制(load frequency control,LFC)问题,本文提出了一种事件触发分布式模型预测控制(event-triggered distributed model predictive control,ET-DMPC)策略.将大规模互联电力系统分解成多个动态耦合的子系统,考虑发电机变化率约束(generation rate constraint,GRC)和调速器阀门位置限制,建立分布式预测控制优化问题.为了降低系统计算负担,减少计算资源的消耗和浪费,基于预测值和系统实际状态的误差构造事件触发条件.在事件触发机制下,只有子系统满足相应的事件触发条件时,控制器才传输状态信息和求解优化问题,并与邻域子系统交互最优解作用下的关联信息.仿真结果表明,本文提出的控制策略在负荷扰动和系统参数不确定的情况下具有良好的鲁棒性,同时极大地降低了系统的计算负担.