This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an ...This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.展开更多
As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ...As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.展开更多
Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented. The governing equations were the unsteady Reyn...Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented. The governing equations were the unsteady Reynolds-averaged Navier-Stokes (RANS) which were solved by the pimpleDyMFoam solver, and the AMI method was employed to handle mesh movements. The National Renewable Energy Laboratory (NREL) phase VI wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5, 10, 15, and 25 m/s) at a fixed blade pitch and constant rotational speed. Detailed numerical results of vortex structure, time histories of thrust, and pressure distribution on the blade and tower were presented. The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine, while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower. Also, strong interaction of blade tip vortices with separation from the tower was observed.展开更多
Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation tec...Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation technique. Simulation results indicate that the CPG model exhibits complex dynamics, while each parameter has specifically definitive influence trends on the CPG output. These conclusions were applied to control a quadrupedal robot to walk in different gaits, clear obstacle, and walk up- and down-slope successfully.展开更多
The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined an...The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined and the corresponding reduced forms are obtained. The result of the work is shown in table form.展开更多
Simulation and interpretation of marine controlled-source electromagnetic(CSEM) data often approximate the transmitter source as an ideal horizontal electric dipole(HED) and assume that the receivers are located on a ...Simulation and interpretation of marine controlled-source electromagnetic(CSEM) data often approximate the transmitter source as an ideal horizontal electric dipole(HED) and assume that the receivers are located on a flat seabed.Actually,however,the transmitter dipole source will be rotated,tilted and deviated from the survey profile due to ocean currents.And free-fall receivers may be also rotated to some arbitrary horizontal orientation and located on sloping seafloor.In this paper,we investigate the effects of uncertainties in the transmitter tilt,transmitter rotation and transmitter deviation from the survey profile as well as in the receiver's location and orientation on marine CSEM data.The model study shows that the uncertainties of all position and orientation parameters of both the transmitter and receivers can propagate into observed data uncertainties,but to a different extent.In interpreting marine data,field data uncertainties caused by the position and orientation uncertainties of both the transmitter and receivers need to be taken into account.展开更多
Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electri...Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electric power systems, the most interesting perspective concerns the capability of the system to increase the exploitation of the renewable resources. The integration of DGs in the electric distribution network requires a revision of this infrastructure, so far designed and developed assuming that power flows in one direction: from the high voltage transmission network to the medium voltage distribution, to reach final customers on the low voltage network. The attention to an efficient operation of distribution networks is increasing all over the world; this interest is becoming higher and higher also in Italy, where the high energy prices push in the direction of fostering efficiency as much as possible. This work describes a study developed in the AlpEnergy project framework: an International Cooperation Program aimed at introducing an efficient operational model for the distributed production and consumption. In particular it is proposed a new model for the integration and the management of the DG in the distribution network. The new model (defined VPS: Virtual Power System) is based on a communication channel between the active users (generators), the loads and, eventually, the Distribution System Operators (DSOs).展开更多
The paper presents the measurement campaign of wind energy potential undertaken in Republic of Macedonia on four sites from the middle of 2006. The wind data analysis has been performed for one site, following with th...The paper presents the measurement campaign of wind energy potential undertaken in Republic of Macedonia on four sites from the middle of 2006. The wind data analysis has been performed for one site, following with the assessment of energy production of simulated wind park with six wind turbine generators.展开更多
The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio o...The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.展开更多
Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile t...Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile test data should be available. A suitable facility for testing wind turbine profiles at high Reynolds numbers is the Cryogenic Wind Tunnel Cologne DNW-KKK. By means of injecting liquid nitrogen the tunnel can be cooled down to 100 K and the Reynolds number therefore can be raised accordingly. The maximum Reynolds number for 2D profile tests can reach 27x10^6. In this paper the test uncertainty and the flow quality of DNW-KKK were analyzed. Then some test results on the Reynolds number effect of the wind turbine profiles will be presented. The Reynolds number effect is different from model to model. Especially for thick profiles and flow control devices the Reynolds number effect is not always like the description in literature.展开更多
This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator ca...This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator can obtain a high heat transfer rate with minimalpressure drop penalty. The simulations were carried out to understand the physicalbehavior of this kind of mesoscale heat enhancement component. By visualizing the heat transfer and flow characteristics, it is found that the swirlflow is induced by swirlgenerator in the circular tube couples with the impinging jet effect. After passing through the swirlgenerator, the localfriction factor of liquid can quickly return to lower levelmore quickly, while the localNusselt number maintains higher values for a distance; thus, the evaluation criterion of localperformance is improved. Single-factor optimization is used for three geometric parameters, i.e., the angle of swirlgenerator(25o, 45o, and 60o), the length of swirlgenerator(0.005, 0.01, and 0.02 m), and the center rod radius(1, 2, and 3 mm). The optimum parameters of the swirlgenerator for laminar flow of air in a circular tube are obtained, which should be 60o, 0.005 m, and 3 mm, respectively.展开更多
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different a...Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.展开更多
The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix ...The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix organic electroluminescent display technology. A novel method to improve display contrast ratio is presented. Finally several 3G phone set prototypes with OLED display panels are given as well as the market forecast.展开更多
The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator wi...The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.展开更多
The Leibniz-Hopf algebra is the free associative Z - algebra with one generator in each positive degree and coproduct is given by the Cartan formula. It has been also known as the 'ring ofnoncommutative symmetric fun...The Leibniz-Hopf algebra is the free associative Z - algebra with one generator in each positive degree and coproduct is given by the Cartan formula. It has been also known as the 'ring ofnoncommutative symmetric functions' [1], and to be isomorphic to the Solomon Descent algebra [ 12]. This Hopf algebra has links with algebra,topology and combinatorics. In this article we consider another approach of proof for the antipode formula in the Leibniz-Hopf algebra by using some properties of words in [2].展开更多
Piezoelectric nanowires have attracted much scientific interest in the last few years because of their enhanced piezoelectric coefficients at nanometer scale, with promises of efficient mechanical energy harvesters fo...Piezoelectric nanowires have attracted much scientific interest in the last few years because of their enhanced piezoelectric coefficients at nanometer scale, with promises of efficient mechanical energy harvesters for autonomous integrated systems. This paper presents the design and, for the first time, guideline rules, based on simple analytical expressions, to improve the performance of a mechanical energy harvester integrating vertical ZnO piezoelectric nanowires. Additional simulations were carried out to account more realistically for device geometry. The authors discuss the prospects of such an approach, based on design and material improvement.展开更多
End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windin...End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.展开更多
DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the D...DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.展开更多
文摘This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.
文摘As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.
基金Supported by the National Natural Science Foundation of China under Grant Nos.50739004 and 11072154.
文摘Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented. The governing equations were the unsteady Reynolds-averaged Navier-Stokes (RANS) which were solved by the pimpleDyMFoam solver, and the AMI method was employed to handle mesh movements. The National Renewable Energy Laboratory (NREL) phase VI wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5, 10, 15, and 25 m/s) at a fixed blade pitch and constant rotational speed. Detailed numerical results of vortex structure, time histories of thrust, and pressure distribution on the blade and tower were presented. The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine, while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower. Also, strong interaction of blade tip vortices with separation from the tower was observed.
文摘Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation technique. Simulation results indicate that the CPG model exhibits complex dynamics, while each parameter has specifically definitive influence trends on the CPG output. These conclusions were applied to control a quadrupedal robot to walk in different gaits, clear obstacle, and walk up- and down-slope successfully.
基金Supported by NSF-China Grant 10671156NSF of Shaanxi Province of China (SJ08A05) NWU Graduate Innovation and Creativity Funds under Grant No.09YZZ56
文摘The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined and the corresponding reduced forms are obtained. The result of the work is shown in table form.
基金funded by the National Natural Science Foundation of China (41130420)the State High-Tech Development Plan of China (2012AA09A20101)
文摘Simulation and interpretation of marine controlled-source electromagnetic(CSEM) data often approximate the transmitter source as an ideal horizontal electric dipole(HED) and assume that the receivers are located on a flat seabed.Actually,however,the transmitter dipole source will be rotated,tilted and deviated from the survey profile due to ocean currents.And free-fall receivers may be also rotated to some arbitrary horizontal orientation and located on sloping seafloor.In this paper,we investigate the effects of uncertainties in the transmitter tilt,transmitter rotation and transmitter deviation from the survey profile as well as in the receiver's location and orientation on marine CSEM data.The model study shows that the uncertainties of all position and orientation parameters of both the transmitter and receivers can propagate into observed data uncertainties,but to a different extent.In interpreting marine data,field data uncertainties caused by the position and orientation uncertainties of both the transmitter and receivers need to be taken into account.
文摘Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electric power systems, the most interesting perspective concerns the capability of the system to increase the exploitation of the renewable resources. The integration of DGs in the electric distribution network requires a revision of this infrastructure, so far designed and developed assuming that power flows in one direction: from the high voltage transmission network to the medium voltage distribution, to reach final customers on the low voltage network. The attention to an efficient operation of distribution networks is increasing all over the world; this interest is becoming higher and higher also in Italy, where the high energy prices push in the direction of fostering efficiency as much as possible. This work describes a study developed in the AlpEnergy project framework: an International Cooperation Program aimed at introducing an efficient operational model for the distributed production and consumption. In particular it is proposed a new model for the integration and the management of the DG in the distribution network. The new model (defined VPS: Virtual Power System) is based on a communication channel between the active users (generators), the loads and, eventually, the Distribution System Operators (DSOs).
文摘The paper presents the measurement campaign of wind energy potential undertaken in Republic of Macedonia on four sites from the middle of 2006. The wind data analysis has been performed for one site, following with the assessment of energy production of simulated wind park with six wind turbine generators.
基金Projects(51675043,52005038)supported by the National Natural Science Foundation of China。
文摘The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.
文摘Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile test data should be available. A suitable facility for testing wind turbine profiles at high Reynolds numbers is the Cryogenic Wind Tunnel Cologne DNW-KKK. By means of injecting liquid nitrogen the tunnel can be cooled down to 100 K and the Reynolds number therefore can be raised accordingly. The maximum Reynolds number for 2D profile tests can reach 27x10^6. In this paper the test uncertainty and the flow quality of DNW-KKK were analyzed. Then some test results on the Reynolds number effect of the wind turbine profiles will be presented. The Reynolds number effect is different from model to model. Especially for thick profiles and flow control devices the Reynolds number effect is not always like the description in literature.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2016YFC0400406)
文摘This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator can obtain a high heat transfer rate with minimalpressure drop penalty. The simulations were carried out to understand the physicalbehavior of this kind of mesoscale heat enhancement component. By visualizing the heat transfer and flow characteristics, it is found that the swirlflow is induced by swirlgenerator in the circular tube couples with the impinging jet effect. After passing through the swirlgenerator, the localfriction factor of liquid can quickly return to lower levelmore quickly, while the localNusselt number maintains higher values for a distance; thus, the evaluation criterion of localperformance is improved. Single-factor optimization is used for three geometric parameters, i.e., the angle of swirlgenerator(25o, 45o, and 60o), the length of swirlgenerator(0.005, 0.01, and 0.02 m), and the center rod radius(1, 2, and 3 mm). The optimum parameters of the swirlgenerator for laminar flow of air in a circular tube are obtained, which should be 60o, 0.005 m, and 3 mm, respectively.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 51379125, 51411130131, 11432009), the National Key Basic Research Development Plan (973 Plan) Project of China (Grant No. 2013CB036103), High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China, ABS(China), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. 2013022).
文摘Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.
文摘The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix organic electroluminescent display technology. A novel method to improve display contrast ratio is presented. Finally several 3G phone set prototypes with OLED display panels are given as well as the market forecast.
文摘The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.
文摘The Leibniz-Hopf algebra is the free associative Z - algebra with one generator in each positive degree and coproduct is given by the Cartan formula. It has been also known as the 'ring ofnoncommutative symmetric functions' [1], and to be isomorphic to the Solomon Descent algebra [ 12]. This Hopf algebra has links with algebra,topology and combinatorics. In this article we consider another approach of proof for the antipode formula in the Leibniz-Hopf algebra by using some properties of words in [2].
文摘Piezoelectric nanowires have attracted much scientific interest in the last few years because of their enhanced piezoelectric coefficients at nanometer scale, with promises of efficient mechanical energy harvesters for autonomous integrated systems. This paper presents the design and, for the first time, guideline rules, based on simple analytical expressions, to improve the performance of a mechanical energy harvester integrating vertical ZnO piezoelectric nanowires. Additional simulations were carried out to account more realistically for device geometry. The authors discuss the prospects of such an approach, based on design and material improvement.
文摘End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.
文摘DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.