Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maint...Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maintained at constant, well-known, temperature. It was built in order to improve the uncertainties of the dew-point temperature and humidity scales realization at the National Institute for Standard (NIS) in the dew-point range from -50 ℃ to + 10 ℃. Several experiments were carried out in the above mentioned range in order to characterize the generator. Characterization comprised studies of its saturator efficiency, temperature stability and a comparison with a calibrated chilled-mirror hygrometer. The results of the efficiency tests showed good performance of the generator as described below. For uncertainty of measurements, a thorough analysis was also described representing estimations of contributions for all the sources that affecting measurements.展开更多
We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced c...We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.展开更多
文摘Abstract: This paper describes the development and characterization of a two-temperature (2-T), constant pressure humidity generator It relies on the saturation of a stream of gas flowing over a water surface maintained at constant, well-known, temperature. It was built in order to improve the uncertainties of the dew-point temperature and humidity scales realization at the National Institute for Standard (NIS) in the dew-point range from -50 ℃ to + 10 ℃. Several experiments were carried out in the above mentioned range in order to characterize the generator. Characterization comprised studies of its saturator efficiency, temperature stability and a comparison with a calibrated chilled-mirror hygrometer. The results of the efficiency tests showed good performance of the generator as described below. For uncertainty of measurements, a thorough analysis was also described representing estimations of contributions for all the sources that affecting measurements.
文摘We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.