An intelligent detecting system based on wireless transmission is designed. Its hardware includes the card reading module, the wireless digital transmission module, the LCD module, the random password keyboard module ...An intelligent detecting system based on wireless transmission is designed. Its hardware includes the card reading module, the wireless digital transmission module, the LCD module, the random password keyboard module and a 16×16 lattice word database based on e-Flash MM36SB020. Its software is a communication protocol between the central control computer and the entrance management base station. To resolve the conflicting problems occurred during the data transmission, a method of delaying time at random is proposed.展开更多
Low-Density Parity-Check (LDPC) code is one of the most exciting topics among the coding theory community.It is of great importance in both theory and practical communications over noisy channels.The most advantage of...Low-Density Parity-Check (LDPC) code is one of the most exciting topics among the coding theory community.It is of great importance in both theory and practical communications over noisy channels.The most advantage of LDPC codes is their relatively lower decoding complexity compared with turbo codes,while the disadvantage is its higher encoding complexity.In this paper,a new ap- proach is first proposed to construct high performance irregular systematic LDPC codes based on sparse generator matrix,which can significantly reduce the encoding complexity under the same de- coding complexity as that of regular or irregular LDPC codes defined by traditional sparse parity-check matrix.Then,the proposed generator-based systematic irregular LDPC codes are adopted as con- stituent block codes in rows and columns to design a new kind of product codes family,which also can be interpreted as irregular LDPC codes characterized by graph and thus decoded iteratively.Finally, the performance of the generator-based LDPC codes and the resultant product codes is investigated over an Additive White Gaussian Noise (AWGN) and also compared with the conventional LDPC codes under the same conditions of decoding complexity and channel noise.展开更多
Large Scale multiple input multiple output(MIMO) systems have recently emerged as a promising technology for 5G communications.While they have been shown to offer significant performance benefits in theoretical studie...Large Scale multiple input multiple output(MIMO) systems have recently emerged as a promising technology for 5G communications.While they have been shown to offer significant performance benefits in theoretical studies,the large scale MIMO transmitters will have to be deployed in the limited physical space of today's base stations(BSs).Accordingly,this paper examines effects of deploying increasing numbers of antennas in fixed physical space,by reducing the antenna spacing.We focus on the resulting performance of large-scale MIMO transmitters using low complexity closed form precoding techniques.In particular,we investigate the combined effect of reducing the distance between the antenna elements with increasing the number of elements in a fixed transmitter space.This gives rise to two contradicting phenomena:the reduction of spatial diversity due to reducing the separation between antennas and the increase in transmit diversity by increasing the number of elements.To quantify this tradeoff,we investigate densely deployed uniform antenna arrays modelled by detailed electromagnetic simulation.Our results show the somewhat surprising result that,by reducing the separations between the antennas to significantly less than the transmit wavelength to fit more antennas,the resulting system performance improves.展开更多
Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most exis...Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.展开更多
This paper studies (1 + u)-constacyelic codes over the ring F2 + uF2 + vF,2 + uvF2. It is proved that the image of a (1 + u)-constacyclic code of length n over F2 + uF2 + vF2 +uvF2 under a Gray map is a di...This paper studies (1 + u)-constacyelic codes over the ring F2 + uF2 + vF,2 + uvF2. It is proved that the image of a (1 + u)-constacyclic code of length n over F2 + uF2 + vF2 +uvF2 under a Gray map is a distance invariant binary quasi-cyclic code of index 2 and length 4n. A set of generators of such constacyclic codes for an arbitrary length is determined, Some optimal binary codes are obtained directly from (1 + u)-constacyclic codes over F2 + uF2 + vF2 + uvF2.展开更多
文摘An intelligent detecting system based on wireless transmission is designed. Its hardware includes the card reading module, the wireless digital transmission module, the LCD module, the random password keyboard module and a 16×16 lattice word database based on e-Flash MM36SB020. Its software is a communication protocol between the central control computer and the entrance management base station. To resolve the conflicting problems occurred during the data transmission, a method of delaying time at random is proposed.
基金Supported by the National Aeronautical Foundation of Science and Research of China (No.04F52041)the Natural Science Foundation of Jiangsu Province (No.BK2006188).
文摘Low-Density Parity-Check (LDPC) code is one of the most exciting topics among the coding theory community.It is of great importance in both theory and practical communications over noisy channels.The most advantage of LDPC codes is their relatively lower decoding complexity compared with turbo codes,while the disadvantage is its higher encoding complexity.In this paper,a new ap- proach is first proposed to construct high performance irregular systematic LDPC codes based on sparse generator matrix,which can significantly reduce the encoding complexity under the same de- coding complexity as that of regular or irregular LDPC codes defined by traditional sparse parity-check matrix.Then,the proposed generator-based systematic irregular LDPC codes are adopted as con- stituent block codes in rows and columns to design a new kind of product codes family,which also can be interpreted as irregular LDPC codes characterized by graph and thus decoded iteratively.Finally, the performance of the generator-based LDPC codes and the resultant product codes is investigated over an Additive White Gaussian Noise (AWGN) and also compared with the conventional LDPC codes under the same conditions of decoding complexity and channel noise.
基金supported by the Royal Academy of Engineering,UKthe Seventh Framework Programme for Research of the European Commission under grant number HARP-318489
文摘Large Scale multiple input multiple output(MIMO) systems have recently emerged as a promising technology for 5G communications.While they have been shown to offer significant performance benefits in theoretical studies,the large scale MIMO transmitters will have to be deployed in the limited physical space of today's base stations(BSs).Accordingly,this paper examines effects of deploying increasing numbers of antennas in fixed physical space,by reducing the antenna spacing.We focus on the resulting performance of large-scale MIMO transmitters using low complexity closed form precoding techniques.In particular,we investigate the combined effect of reducing the distance between the antenna elements with increasing the number of elements in a fixed transmitter space.This gives rise to two contradicting phenomena:the reduction of spatial diversity due to reducing the separation between antennas and the increase in transmit diversity by increasing the number of elements.To quantify this tradeoff,we investigate densely deployed uniform antenna arrays modelled by detailed electromagnetic simulation.Our results show the somewhat surprising result that,by reducing the separations between the antennas to significantly less than the transmit wavelength to fit more antennas,the resulting system performance improves.
基金Projects(61173169,61106036)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)Program for New Century Excellent Talents in University,China
文摘Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.
基金supported by the National Natural Science Foundation of China under Grant No.60973125the Natural Science Foundation of Anhui Province under Grant No.1208085MA14the Fundamental Research Funds for the Central Universities under Grants Nos.2012HGXJ0040 and 2011HGBZ1298
文摘This paper studies (1 + u)-constacyelic codes over the ring F2 + uF2 + vF,2 + uvF2. It is proved that the image of a (1 + u)-constacyclic code of length n over F2 + uF2 + vF2 +uvF2 under a Gray map is a distance invariant binary quasi-cyclic code of index 2 and length 4n. A set of generators of such constacyclic codes for an arbitrary length is determined, Some optimal binary codes are obtained directly from (1 + u)-constacyclic codes over F2 + uF2 + vF2 + uvF2.