The CPB (Colorado potato beetle), Leptinotarsa decemlineata (Say), is the major insect pest of potato crops in North America, Europe and Asia. Large amounts of chemical insecticides are used to control this insect...The CPB (Colorado potato beetle), Leptinotarsa decemlineata (Say), is the major insect pest of potato crops in North America, Europe and Asia. Large amounts of chemical insecticides are used to control this insect pest. Also, the CPB has developed over the years a resistance to most of the registered chemical insecticides, including those that were effective at one time. One of the most promising alternatives to chemical insecticides consists of taking advantage of natural enemies. The use of the stinkbug predator Perillus bioculatus to control the CPB has been successful at small scale. However, this natural enemy is not abundant in the nature and its hand release at large scale is not realistic. To remedy to this problem, predators must be massively released in potato fields using a mechanical distributor. Such a machine has been successfully designed and built at the Department of Soils and Agri-Food Engineering of University Lavak In this distributor, masses of predators are placed in small containers and mixed with a carrier material. In the field, the containers are mechanically opened at different locations, based on a source-point mass release option. These locations are determined in advance following a field monitoring of the populations of CPBs. Field trials proved that the mechanical distributor is reliable and ease of use. Its efficiency in releasing insect predators is high and comparable to that obtained in previous laboratory tests.展开更多
Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), ...Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm-~ under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified bv ~raphene dots.展开更多
文摘The CPB (Colorado potato beetle), Leptinotarsa decemlineata (Say), is the major insect pest of potato crops in North America, Europe and Asia. Large amounts of chemical insecticides are used to control this insect pest. Also, the CPB has developed over the years a resistance to most of the registered chemical insecticides, including those that were effective at one time. One of the most promising alternatives to chemical insecticides consists of taking advantage of natural enemies. The use of the stinkbug predator Perillus bioculatus to control the CPB has been successful at small scale. However, this natural enemy is not abundant in the nature and its hand release at large scale is not realistic. To remedy to this problem, predators must be massively released in potato fields using a mechanical distributor. Such a machine has been successfully designed and built at the Department of Soils and Agri-Food Engineering of University Lavak In this distributor, masses of predators are placed in small containers and mixed with a carrier material. In the field, the containers are mechanically opened at different locations, based on a source-point mass release option. These locations are determined in advance following a field monitoring of the populations of CPBs. Field trials proved that the mechanical distributor is reliable and ease of use. Its efficiency in releasing insect predators is high and comparable to that obtained in previous laboratory tests.
文摘Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm-~ under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified bv ~raphene dots.