The function of stomata in plants is controlling gas exchange and modulating water balance. The distribution pattern of stomata in most vascular plants follows a certain regulation with at least one normal epidermal c...The function of stomata in plants is controlling gas exchange and modulating water balance. The distribution pattern of stomata in most vascular plants follows a certain regulation with at least one normal epidermal cell between two stomata. However, some plants restricted in several genera of vascular plants have stomatal clusters in which more than one stoma is adjacently arranged with no epidermal cells among them. The developmental process of stomatal clusters in plants, especially in non-mutant (wild type) vascular plants, has rarely been documented, and very few studies concerning the distribution pattern of stomatal clusters on leaf epidermis have been carried out. We reported the developmental mechanism and distribution pattern of stomatal clusters in Begonia peltatifolia Li native to China. The results indicated that the clustered arrangement of meristemoids at the juvenile stage of the leaf development contributed greatly to the pattern of stomatal clusters. Additionally, satellite meristemoids derived from subsidiary cells around the mature stomata also had an impact on the development as well as the pattern of stomatal clusters. Regarding stomatal cluster and singly occurring stoma both as a stomatal unit, we found that the stomatal unit density (i.e., number of stomatal unit per area) increased gradually from the middle part to the edge and the apex of the leaf, while stomatal unit size (i.e., number of stomata per stomatal unit) decreased. The possible reason of this pattern was discussed.展开更多
文摘The function of stomata in plants is controlling gas exchange and modulating water balance. The distribution pattern of stomata in most vascular plants follows a certain regulation with at least one normal epidermal cell between two stomata. However, some plants restricted in several genera of vascular plants have stomatal clusters in which more than one stoma is adjacently arranged with no epidermal cells among them. The developmental process of stomatal clusters in plants, especially in non-mutant (wild type) vascular plants, has rarely been documented, and very few studies concerning the distribution pattern of stomatal clusters on leaf epidermis have been carried out. We reported the developmental mechanism and distribution pattern of stomatal clusters in Begonia peltatifolia Li native to China. The results indicated that the clustered arrangement of meristemoids at the juvenile stage of the leaf development contributed greatly to the pattern of stomatal clusters. Additionally, satellite meristemoids derived from subsidiary cells around the mature stomata also had an impact on the development as well as the pattern of stomatal clusters. Regarding stomatal cluster and singly occurring stoma both as a stomatal unit, we found that the stomatal unit density (i.e., number of stomatal unit per area) increased gradually from the middle part to the edge and the apex of the leaf, while stomatal unit size (i.e., number of stomata per stomatal unit) decreased. The possible reason of this pattern was discussed.