[Objective] The aim was to construct threonine-producing strain M122 overexpressing key gene rhtB for transporter protein to transport threonine to the extracellular, and to investigate effects of different carbon or ...[Objective] The aim was to construct threonine-producing strain M122 overexpressing key gene rhtB for transporter protein to transport threonine to the extracellular, and to investigate effects of different carbon or nitrogen sources and pH values on L-threonine production caused by the recombinant strain. [Method] The fermentation process of L-threonine-producing strain was analyzed by different carbon or nitrogen sources, and carbon or nitrogen sources and pH in fermentation medium were also optimized in this study. [Result] After direct modification, the uti- lization efficiency of threonine-producing strain on nutrients increases. When sucrose was used as carbon source for fermentation, Lothreonine yield via shaking culture was 28.1 g/L When (NH4)2SO4 or yeast powder was used as nitrogen source for fermenta- tion, L-threonine yield was 27.8 and 28.2 g/L respectively, which were all higher than that of other nitrogen sources. The study on optimal pH value showed that it was more beneficial for strain growth and L-threonine yield on neutral condition. [Conclusion] The best carbon source for threonine-produing strain M122 was sucrose, while the best nitrogen source was (NH4)2804 or yeast powder, and the most suit- able pH value was 7.0.展开更多
The study has assessed the denitrification performance of fermented and dark-fermented biosolids as external carbon sources using lab-scaled Sequencing Batch Reactors (SBRs). This was done by adding fermented and da...The study has assessed the denitrification performance of fermented and dark-fermented biosolids as external carbon sources using lab-scaled Sequencing Batch Reactors (SBRs). This was done by adding fermented and dark-fermented biosolids into anoxic zones of two SBRs, and then assessing the change of effluent characteristics comparing to before adding and to a third controlled reactor. The results showed that by adding 150-170 mg rbCOD/L of either of the selected fermented biosolids, almost complete denitrification could be reached for tested SBRs (reduced from initial -20 mg NO3/L to 〈 1 mg NO3/L). Finally, the experiment also found that the impact of NI-I4 components of fermented and dark-fermented biosolids onto the final effluent were much lesser than expected, where only less than 2.5 mg NH4/L were detected in the effluent, much lower than the added 5.0-5.7 mg/L.展开更多
基金Supported by the Science and Technology Supportive Project(Agriculture)Foundation of Huai'an City,Jiangsu Province of China(SN1049)~~
文摘[Objective] The aim was to construct threonine-producing strain M122 overexpressing key gene rhtB for transporter protein to transport threonine to the extracellular, and to investigate effects of different carbon or nitrogen sources and pH values on L-threonine production caused by the recombinant strain. [Method] The fermentation process of L-threonine-producing strain was analyzed by different carbon or nitrogen sources, and carbon or nitrogen sources and pH in fermentation medium were also optimized in this study. [Result] After direct modification, the uti- lization efficiency of threonine-producing strain on nutrients increases. When sucrose was used as carbon source for fermentation, Lothreonine yield via shaking culture was 28.1 g/L When (NH4)2SO4 or yeast powder was used as nitrogen source for fermenta- tion, L-threonine yield was 27.8 and 28.2 g/L respectively, which were all higher than that of other nitrogen sources. The study on optimal pH value showed that it was more beneficial for strain growth and L-threonine yield on neutral condition. [Conclusion] The best carbon source for threonine-produing strain M122 was sucrose, while the best nitrogen source was (NH4)2804 or yeast powder, and the most suit- able pH value was 7.0.
文摘The study has assessed the denitrification performance of fermented and dark-fermented biosolids as external carbon sources using lab-scaled Sequencing Batch Reactors (SBRs). This was done by adding fermented and dark-fermented biosolids into anoxic zones of two SBRs, and then assessing the change of effluent characteristics comparing to before adding and to a third controlled reactor. The results showed that by adding 150-170 mg rbCOD/L of either of the selected fermented biosolids, almost complete denitrification could be reached for tested SBRs (reduced from initial -20 mg NO3/L to 〈 1 mg NO3/L). Finally, the experiment also found that the impact of NI-I4 components of fermented and dark-fermented biosolids onto the final effluent were much lesser than expected, where only less than 2.5 mg NH4/L were detected in the effluent, much lower than the added 5.0-5.7 mg/L.