[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacill...[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacillus natto was developed.[Result] The best fermentation condition optimized by the test of single factor and the orthogonal design respectively was mixing ratio of bean curd residue to marc 2∶1,substrate pH value 6,fermentation temperature 39 ℃,inoculum volume 10% and fermentation time 48 h.Under this optimized fermentation condition,the content of crude fiber in the substrate decreased from 107.8 mg/g before SSF to 56.2 mg/g after SSF,and the degeneration rate of crude fiber was 47.87%.[Conclusion] The bean curd residue in its palatability was enormously improved by SSF with Bacillus natto strain,which could be expected to be widely used as raw material of health foodstuff.展开更多
Fermented whey (a by-product from tofu industry) has been used as a coagulant in tofu manufactures in Indonesia. This research aimed to study effects of fermented whey on coagulation efficiency and physicochemical c...Fermented whey (a by-product from tofu industry) has been used as a coagulant in tofu manufactures in Indonesia. This research aimed to study effects of fermented whey on coagulation efficiency and physicochemical characteristics of tofu, compared to other acid coagulants (acetic acid and glucono-delta-lactone (GDL)) and salt coagulants (calcium sulfate and natural gypsum). A randomized block design with a single factor was used in this research. Fermented whey could be used as coagulant in tofu manufacturing. Physicochemical characteristics of tofu from fermented whey were not significantly difference compared to tofu from calcium salt and acid coagulants. Coagulation efficiencies (CF, TSIL TPR and TB~) of fermented whey are lower than that from calcium salt coagulants (calcium sulphate and natural gypsum). Fermented whey showed no significant differences in tofu properties and parameters of coagulation process, compared to GDL and acetic acid.展开更多
文摘[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacillus natto was developed.[Result] The best fermentation condition optimized by the test of single factor and the orthogonal design respectively was mixing ratio of bean curd residue to marc 2∶1,substrate pH value 6,fermentation temperature 39 ℃,inoculum volume 10% and fermentation time 48 h.Under this optimized fermentation condition,the content of crude fiber in the substrate decreased from 107.8 mg/g before SSF to 56.2 mg/g after SSF,and the degeneration rate of crude fiber was 47.87%.[Conclusion] The bean curd residue in its palatability was enormously improved by SSF with Bacillus natto strain,which could be expected to be widely used as raw material of health foodstuff.
文摘Fermented whey (a by-product from tofu industry) has been used as a coagulant in tofu manufactures in Indonesia. This research aimed to study effects of fermented whey on coagulation efficiency and physicochemical characteristics of tofu, compared to other acid coagulants (acetic acid and glucono-delta-lactone (GDL)) and salt coagulants (calcium sulfate and natural gypsum). A randomized block design with a single factor was used in this research. Fermented whey could be used as coagulant in tofu manufacturing. Physicochemical characteristics of tofu from fermented whey were not significantly difference compared to tofu from calcium salt and acid coagulants. Coagulation efficiencies (CF, TSIL TPR and TB~) of fermented whey are lower than that from calcium salt coagulants (calcium sulphate and natural gypsum). Fermented whey showed no significant differences in tofu properties and parameters of coagulation process, compared to GDL and acetic acid.