Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3P...Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.展开更多
A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the ...A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeC13/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeC13/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeC13/SiO2 ex- hibited higher molar ratio of Lewis acid sites and Brtpnsted acid sites, which might be another reason for the in- crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2% conversion and 82.0% selectivity were obtained. Mean- while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10774039).
文摘Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.
基金Supported by the National Basic Research Program of China("973"Program,No.21476163)
文摘A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeC13/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeC13/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeC13/SiO2 ex- hibited higher molar ratio of Lewis acid sites and Brtpnsted acid sites, which might be another reason for the in- crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2% conversion and 82.0% selectivity were obtained. Mean- while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.