Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O...Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.展开更多
文摘Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.